Биполярные транзисторы

1. Общие сведения

Транзисторы – это полупроводниковые приборы, пригодные для усиления мощности и имеющие три вывода или больше. В транзисторах может быть разное число переходов между областями с различной электропроводностью. Наиболее распространены транзисторы с двумя n–p–переходами, называемые биполярными, так как их работа основана на использован

ии носителей заряда обоих знаков. Первые транзисторы были точечными, но они работали недостаточно устойчиво. В настоящее время изготовляются и применяются исключительно плоскостные транзисторы.

Устройство плоскостного биполярного транзистора показано схематически на рис. 5.1.

Рис. 5.1. Устройство плоскостного биполярного транзистора

Транзистор представляет собой пластину германия, или кремния, или другого полупроводника, в которой созданы три области с различной электропроводностью. Для примера взят транзистор типа n–p–n, имеющий среднюю область с дырочной, а две крайние области – с электронной электропроводностью. Широко применяются также транзисторы типа p–n–p, в которых дырочной электропроводностью обладают две крайние области, а средняя имеет электронную электропроводность.

Средняя область транзистора называется базой, одна крайняя область – эмиттером, другая – коллектором. Таким образом, в транзисторе имеются два n–p–перехода: эмиттерный – между эмиттером и базой и коллекторный – между базой и коллектором. Расстояние между ними должно быть очень малым, не более единиц микрометров, т.е. область базы должна быть очень тонкой. Это является условием хорошей работы транзистора. Кроме того, концент`рация примесей в базе всегда значительно меньше, чем в коллекторе и эмиттере. От базы, эмиттера и коллектора сделаны выводы.

Для величин, относящихся к базе, эмиттеру и коллектору, применяют в качестве индексов буквы «б», «э» и «к». Токи в проводах базы, эмиттера и коллектора обозначают соответственно iб, iэ, iк. Напряжения между электродами обозначают двойными индексами, например напряжение между базой и эмиттером Uб-э, между коллектором и базой Uк-б. На условном графическом обозначении (рис. 5.2) транзисторов p–n–p и n–p–n стрелка показывает условное (от плюса к минусу) направление тока в проводе эмиттера при прямом напряжении на эмиттерном переходе.

Рис. 5.2. Условное графическое обозначение транзисторов

Транзистор может работать в трех режимах в зависимости от напряжения на его переходах.

Активный режим – напряжение на эмиттерном переходе прямое, а на коллекторном – обратное.

Режим отсечки (запирания) – обратное напряжение подано на оба перехода.

Режим насыщения – на обоих переходах прямое напряжение.

Основным является активный режим. Он используется в большинстве усилителей и генераторов. Режимы отсечки и насыщения характерны для импульсной работы транзистора.

В схемах с транзисторами обычно образуются две цепи: входная (управляющая) – в нее включают источник усиливаемых сигналов и выходная (управляемая) – в нее включается нагрузка.

2. Принцип действия n–p–n транзистора

Рассмотрим принцип работы транзистора, на примере n–p–n транзистора в режиме без нагрузки, когда включены только источники постоянных питающих напряжений E1и E2(рис. 5.3).

Рис. 5.3. Схема включения n–p–n транзистора без нагрузки

Полярность их такова, что на эмиттерном переходе напряжение прямое, а на коллекторном – обратное. Поэтому сопротивление эмиттерного перехода мало и для получения нормального тока в этом переходе достаточно напряжения E1в десятые доли вольта. Сопротивление коллекторного перехода велико, и напряжение E2обычно составляет единицы или десятки вольт. Из схемы на рис. 5.3 видно, что напряжения между электродами транзистора связаны простой зависимостью .

При работе транзистора в активном режиме обычно всегда Uб-э<<Uк-би, следовательно, Uк-э»Uк-б.

Вольт-амперная характеристика эмиттерного перехода представляет собой характеристику полупроводникового диода при прямом токе, а вольт-амперная характеристика коллекторного перехода подобна характеристике диода при обратном токе.

Принцип работы транзистора заключается в том, что прямое напряжение эмиттерного перехода, т.е. участка база – эмиттер (Uб-э), существенно влияет на токи эмиттера и коллектора. Чем больше это напряжение, тем больше токи эмиттера и коллектора. При этом изменения тока коллектора лишь незначительно меньше изменений тока эмиттера. Таким образом, напряжение Uб-э, т.е. входное напряжение, управляет током коллектора. Усиление электрических колебаний с помощью транзистора основано именно на этом явлении.

Физические процессы в транзисторе происходят следующим образом. При увеличении прямого входного напряжения Uб-эпонижается потенциальный барьер в эмиттерном переходе и соответственно возрастает ток через этот переход – ток эмиттера iэ. Электроны этого тока инжектируются из эмиттера в базу и благодаря диффузии проникают сквозь базу в коллекторный переход, увеличивая ток коллектора. Т.к. коллекторный переход работает при обратном напряжении, то в этом переходе возникают объемные заряды, показанные на рисунке кружками со знаками «+» и «–». Между ними возникает электрическое поле. Оно способствует продвижению (экстракции) через коллекторный переход электронов, пришедших сюда из эмиттера, т.е. втягивают электроны в область коллекторного перехода.

Если толщина базы достаточно мала и концентрация дырок в ней невелика, то большинство электронов, пройдя через базу, не успевает рекомбинировать с дырками базы и достигает коллекторного перехода. Лишь небольшая часть электронов рекомбинирует в базе с дырками. В результате рекомбинации возникает ток базы. В установившемся режиме число дырок в базе должно быть неизменным. Вследствие рекомбинации каждую секунду сколько-то дырок исчезает, но столько же новых дырок возникает за счет того, что из базы уходит в направлении к плюсу источника E1такое же число электронов. Иначе говоря, в базе не может накапливаться много электронов. Если некоторое число инжектированных в базу из эмиттера электронов не доходит до коллектора, а остается в базе, рекомбинируя с дырками, то точно такое же число электронов должно уходить из базы в виде тока iб. Поскольку ток коллектора получается меньше тока эмиттера, то в соответствии с первым законом Кирхгофа всегда существует следующее соотношение между токами:

Ток базы является бесполезным и даже вредным. Желательно, чтобы он был как можно меньше. Обычно iбсоставляет малую долю (проценты) тока эмиттера, т. е. , а следовательно, ток коллектора лишь незначительно меньше тока эмиттера и можно считать . Именно для того, чтобы ток iббыл как можно меньше, базу делают очень тонкой и уменьшают в ней концентрацию примесей, которая определяет концентрацию дырок. Тогда меньшее число электронов будет рекомбинировать в базе с дырками.

Страница:  1  2  3  4  5 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы