Амплитудная модуляция смещением
Графическое изображение дискретного сигнала fd(n) приведено на рисунок 3.9.
Рисунок 3.9 - Дискретный сигнал
Для отыскания спектральной плотности дискретного сигнала воспользуемся соотношением:
, (3.25)
где - спектральная плотность видеосигнала (3.5) на соответствующих частотах.
Модуль спектральной плотности дискретного сигнала приведен на рисунок 3.10.
Рисунок 3.10 - Модуль спектральной плотности дискретного сигнала, модуль спектральной плотности видеосигнала.
Таким образом, спектр дискретного сигнала периодичен по частоте, с периодом равным частоте дискретизации. Если эффект наложения спектров отсутствует, то в полосе частот от минус половина частоты дискретизации до плюс половина частоты дискретизации, спектр дискретного сигнала равен спектру аналогового сигнала. Для случая приведенного на рисунок 3.11 это условие не выполняется. Поэтому восстановленный сигнал будет искажен рисунок 3.11.
3.6 Сигнал представленный рядом Котельникова
Получить сигнал, определенный в любой момент времени (аналоговый сигнал fa(t)) можно используя интерполяционную формулу:
, (3.26)
Данный ряд называется рядом Котельникова и позволяет полностью восстановить аналоговый сигнал fa(t) из дискретных выборок этого сигнала, если сигнал fa(t) имеет ограниченный спектр с максимальной частотой fg, и если выборки взяты с частотой не меньшей 2fg. Поскольку сигнал, подвергнутый дискретизации (3.2), имеет неограниченный спектр (3.5), то восстановление сигнала (3.26) по его выборкам (3.23), будет неточным. Уменьшить ошибку до любого уровня можно увеличивая частоту дискретизации. Сигнал восстановленный с помощью выражения (3.26), приведен на рисунок 3.11.
Рисунок 3.11 - Сигнал представленный рядом Котельникова.
3.7 Выводы
Анализируя формулы и графики, приведенные в разделе 3 можно сделать несколько выводов:
1) Ширина спектра зависит от длительности импульса: чем короче сигнал, тем шире спектр и наоборот.
2) Огибающая спектра периодического сигнала имеет форму спектральной плотности одиночного сигнала.
3) Спектр амплитудно-модулированного радиосигнала представляет собой фактически спектр модулирующего видеосигнала, смещенный по оси частот на (f0)ω0.
4) Спектр дискретного сигнала представляет собой сумму спектров видеосигнала смещенных друг относительно друга на n×2×fg.
4 Анализ электрических цепей
4.1 Исследование апериодического звена
Рисунок 4.1 – Электрическая принципиальная схема апериодического звена.
R1=1000 Ом
C=0.5 мкФ
4.1.1 Комплексный частотный коэффициент передачи апериодического звена
Найдем математическое выражение для комплексного частотного коэффициента передачи, исходя из схемы приведенной на рисунке 4.1:
(4.1)
Из формулы (4.1) легко получить АЧХ и ФЧХ апериодического звена.
АЧХ можно получить, взяв модуль комплексного частотного коэффициента передачи.
ФЧХ вычислим по формуле (4.2).
(4.2)
Построим графики АХЧ и ФЧХ:
Рисунок 4.2– АЧХ апериодического звена
Рисунок 4.3– ФЧХ апериодического звена
4.1.2 Операторный коэффициент передачи
Запишем операторный коэффициент передачи для апериодического звена
. (4.3)
4.1.3 Импульсная характеристика апериодического звена
Импульсная характеристика цепи определяется как реакция цепи на входной сигнал в виде дельта-функции.
Импульсная характеристика находится ОПЛ от операторного коэффициента передачи. ОПЛ определяется следующим образом:
. (4.4)
Однако на практике при расчетах операторным методом пользуются таблицами прямых и обратных преобразований Лапласа. Это в значительной мере облегчает вычисления. Вычислив обратное преобразование Лапласа от операторного коэффициента передачи его получим:
. (4.5)
Рисунок 4.4– Импульсная характеристика апериодического звена
4.1.4 Переходная характеристика апериодического звена
Переходная характеристика цепи представляет собой реакцию цепи на сигнал в виде функции Хевисайда. В общем случае переходная характеристика находится как:
, (4.6)
где L-1 – обратное преобразование Лапласа.
Вычислив выражение (4.6) получим:
. (4.7)
Рисунок 4.5– Переходная характеристика апериодического звена
4.2 Исследование колебательного звена
|
Рисунок 4.6 - Схема электрическая принципиальная колебательного звена
L=1.5 мкГн
С=20.000 пФ
Q=50
Для последовательного колебательного контура справедлива формула:
,
Выразив R получим и подставив численные значения Q, L и C найдем R=0,173 Ом.
4.2.1 Комплексный частотный коэффициент передачи колебательного звена
Найдем математическое выражение для комплексного частотного коэффициента передачи, исходя из схемы приведенной на рисунке 4.6:
. (4.8)
Из формулы (4.8), как и для апериодического звена, можно легко получить АЧХ и ФЧХ колебательного звена.
Рисунок 4.7 – АЧХ колебательного звена
Рисунок 4.8 – ФЧХ колебательного звена
4.2.2 Операторный коэффициент передачи
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем