Амплитудная модуляция смещением
Согласно выражениям (3.8) и (3.9) периодический сигнал состоит из суммы бесконечного числа гармонических колебаний кратных частот (гармоник), вклад которых в общую сумму определяется весовыми коэффициентами X[n]. Таким образом, являясь амплитудами дискретных частотных компонентов (гармоник) составляющих данный сигнал, коэффициенты X[n] образуют дискретный спектр периодического сигнала рисунок 3
.4. «Востановленный» с помощью ряда Фурье сигнал, при суммировании десяти первых гармоник, приведен на рис 3.5.
Рисунок 3.4 - Спектр периодического сигнала.
Рисунок 3.5 - Сигнал представленный рядом Фурье, первая и вторая гармоники (пунктирные линии).
3.3 Радиосигнал
3.3.1 Математическая модель радиосигнала
Радиосигнал с огибающей в форме видеосигнала находим из соотношения:
, (3.9)
где
- математическая модель радиосигнала, В;
f0 - частота несущего высокочастотного колебания, Гц;
- начальная фаза колебания, рад.
Найдем частоту несущего высокочастотного колебания f0, которая совпадает с резонансной частотой колебательного звена:
(3.10)
где
- индуктивность колебательного звена, Гн,
- значение емкости колебательного звена, Ф.
Подставляя численное значение частоты несущего высокочастотного колебания (f0=918,9 кГц), в (3.9) построим график радиосигнала рисунок 3.6.
Рисунок 3.6 - Радиосигнал
3.3.2 Спектр радиосигнала
Для отыскания спектральной плотности радиосигнала воспользуемся соотношением:
, (3.11)
где
- спектральная плотность видеосигнала (3.5) на соответствующих частотах, В;
Таким образом, подставляя в выражение (3.11) аналитическое выражение для спектральной плотности видеосигнала (3.5) , и принимаем .
Графическое изображение спектральной плотности радиосигнала приведено на рисунок 3.7. Как видно, при достаточно большом значении частоты несущего высокочастотного колебания, спектральная плотность радиосигнала представляет собой две симметричные копии спектра видеосигнала с половинной амплитудой перенесенные на частоту несущего колебания.
Рисунок 3.7 - Спектральная плотность радиосигнала
3.4 Аналитический сигнал, соответствующий радиосигналу
Аналитический сигнал, соответствующий реальному физическому сигналу , определяется соотношением:
, (3.12)
где
- функция, сопряженная по Гильберту выходному сигналу;
- реальный физический сигнал.
. (3.13)
Также аналитический сигнал может быть представлен через модуль аналитического сигнала
, (3.14)
и полную фазу (3.15)
в виде (3.16)
Для радиосигнала полную фазу можно записать в форме:
, (3.17)
где w0 - частота несущего высокочастотного колебания, ;
Q(t) - изменяющаяся во времени фаза, рад; Q0 - постоянная во времени начальная фаза, рад. В этом случае аналитический сигнал определяется соотношением:
, (3.18)
где
-комплексная огибающая аналитического сигнала, соответствующего радиосигналу, В;
Заметим, что комплексная огибающая аналитического сигнала вещественна, то есть не имеет мнимой составляющей и представляет собой видеосигнал (3.2). Поэтому аналитический сигнал, соответствующий радиосигналу можно представить:
Спектральная плотность аналитического сигнала сосредоточена только в области положительных частот и находится из соотношения:
, (3.19)
где
- спектральная плотность радиосигнала (3.11)
Построим график спектральной плотности аналитического сигнала рисунок 3.8.
Рисунок 3.8 - Спектральная плотность аналитического сигнала
3.5 Дискретный сигнал, соответствующий видеосигналу
В соответствии с теоремой Парсеваля полная энергия сигнала равна:
, (3.20)
Ограничим спектр исходного видеосигнала некоторой граничной частотой fg, таким образом, что бы энергия сигнала, с «ограниченным спектром» была равна 99% энергии исходного сигнала. Находим граничную частоту по формуле, из условия:
, (3.21)
Получаем fg»63,2 кГц.
Если теперь считать, что сигнал имеет спектр, наивысшая частота которого равна fg, то в соответствии с теоремой Котельникова, сигнал может быть полностью определен дискретными выборками, взятыми с частотой 2fg, называемой частотой дискретизации.
Найдем интервал дискретизации Td:
, (3.22)
Математическую модель дискретного fd(n) сигнала можно записать в следующем виде:
, (3.23)
где
n,k – целые числа;
f(kTd) – выборки из видеосигнала (3.2) кратные интервалу дискретизации;
d(n) – единичный импульс определенный как:
, (3.24)
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем