Частотно-временной анализ сигналов
Если A=B=1, то плотный фрейм становится ортогональным базисом. Заметим, что для вейвлетов, образованных материнским вейвлетом (3.3.6), хорошие результаты при восстановлении сигналов получаются при так как . Для больших величин, например будет т.е. восстановление приводит к большим искажениям.
4.3 Примеры вейвлетов для дискретного преобразования
Как было отмечено выше, функции вейвлет обладают свойством частотно-временной локализации, т.е. они ограничены как в частотной, так и во временной областях. Ниже рассмотрим два примера: первый – спектр вейвлетов в частотной области представляет собой идеальный полосовой фильтр, второй – сами функции вейвлет представляют собой прямоугольники. Все вейвлеты, с точки зрения частотно-временных свойств, занимают промежуточное положение между этими крайними случаями.
Sinc-базис. Разобьем ось частот на интервалы (поддиапазоны), как показано на рис. 3.13 при a0 = 2. Такое разбиение называют логарифмическим, так как отношение верхней и нижней границ диапазонов постоянно и равно 2. Такое разбиение является еще и идеальным, так как оно реализуется идеальными полосовыми фильтрами. Подобная идеализация нужна для исследования свойств частотного разложения с помощью идеализированных вейвлетов, что позволит в дальнейшем перейти к более сложным разложениям. Любой сигнал со спектромможет занимать полосу частот, охватывающую несколько таких поддиапазонов.
Тогда и т.е. сигнал представляет собой сумму некоторого числа элементарных сигналов. В рассматриваемом идеальном случае частотные каналы не перекрываются, поэтому имеет место ортогональность этих элементарных сигналов, т.е.
Выберем из всего множества сигналов такие, которые ограничены полосой частот 2I, т.е. имеющие спектр . Рассмотрим периодическую функцию такую, что: , т.е. полученную периодизацией F1(ω) (рис. 3.14)
Тогда спектр функции: Fi (ω) при произвольном I можно представить в виде:
Где - функция окна такая, что:
Посмотрим, как при этих условиях можно представить функцию f (t) во временной области. Для этого разложим периодическую функцию с периодом , в ряд Фурье (см. ):
Где, подставляя (3.5.10а) в (3.5.9) и выполняя обратное преобразование Фурье, получим:
Вычислим первый интеграл. Переставляя операции суммирования и интегрирования и ограничивая пределы интегрирования с учетом функции окна, получим:
где вейвлет
(3.5.14)
и (см. рис. 3.16):
(3.5.15)
Выражение (3.5.13) является представлением функции f (t) в базисе вейвлет. В рассматриваемом частном случае идеальной полосовой фильтрации вейвлетом является функция (3.5.14), образованная из материнской функции по (3.5.15) с учетом (3.5.12). Такой вейвлет называется sinc –вейвлетом по имени функции (3.5.12), которая его образует, а функция (3.5.12) получила название масштабной функции.
Множительпри необходим для сохранения нормы вне зависимости от величины масштаба, так как:
Покажем, что в рассматриваемом частном случае т.е. определяется отсчетами функции при . Рассмотрим интеграл Фурье () при дискретных значениях функции, заданной на интервале Имеем, с учетом (3.5.10б):
Последнее равенство справедливо при и вещественных
Следовательно,
Выполнив преобразование Фурье выражения (3.5.14), можно видеть, что спектр Фурье sinc -вейвлета представляет собой идеальный полосовой фильтр, в общем случае занимающий полосу частот отдо
Вейвлет Хаара. Разобьем теперь временную ось на интервалы, как показано на рис. 3.17 и определим на единичном интервале функцию
Эта функция является материнским вейвлетом, так как она удовлетворяет условию (). Система сдвигов таких функций образует ортонормальный базис, так как их взаимная энергия равна нулю при и равна единице при
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах