Преобразование Лапласа
Введение
Преобразование Лапласа — интегральное преобразование, связывающее функцию комплексного переменного (изображение) с функцией действительного переменного (оригинала). С его помощью исследуются свойств
а динамических систем и решаются дифференциальные и интегральные уравнения.
Одной из особенностей преобразования Лапласа, которые предопределили его широкое распространение в научных и инженерных расчётах, является то, что многим соотношениям и операциям над оригиналами соответствуют более простые соотношения над их изображениями.
1. Прямое преобразование Лапласа
Преобразованием Лапласа функции действительной переменной , называется функция комплексной переменной , такая что:
Правая часть этого выражения называется интегралом Лапласа.
2. Обратное преобразование Лапласа
Обратным преобразованием Лапласа функции комплексного переменного , называется функция действительного переменного, такая что:
где — некоторое вещественное число. Правая часть этого выражения называется интегралом Бромвича.
3. Двустороннее преобразование Лапласа
Двустороннее преобразование Лапласа — обобщение на случай задач, в которых для функции участвуют значения x < 0
Двустороннее преобразование Лапласа определяется следующим образом:
4. Дискретное преобразование Лапласа
Применяется в сфере систем компьютерного управления. Дискретное преобразование Лапласа может быть применено для решётчатых функций. Различают -преобразование и -преобразование.
· -преобразование
Пусть
решётчатая функция, то есть значения этой функции определены только в дискретные моменты времени , где — целое число, а — период дискретизации. Тогда применяя преобразование Лапласа получим:
· -преобразование
Если применить следующую замену переменных:
получим Z-преобразование:
5. Свойства и теоремы
· Абсолютная сходимость
Если интеграл Лапласа абсолютно сходится при σ = σ0, то есть существует предел
то он сходится абсолютно и равномерно для и F(s) — аналитическая функция при ( — действительная часть комплексной переменной s). Точная нижняя грань σa множества чисел σ, при которых это условие выполняется, называется абсциссой абсолютной сходимости преобразования Лапласа для функции f(x).
· Условия существования прямого преобразования Лапласа
Преобразование Лапласа существует в смысле абсолютной сходимости в следующих случаях:
1. Случай : преобразование Лапласа существует, если существует интеграл
2. Случай σ > σa: преобразование Лапласа существует, если интеграл
существует для каждого конечного
x1 > 0 и для
3. Случай σ > 0 или σ > σa (какая из границ больше): преобразование Лапласа существует, если существует преобразование Лапласа для функции f'(x) (производная к f(x)) для σ > σa.
Примечание: это достаточные условия существования.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах