Разностные схемы для уравнений параболического типа
. (3.21)
Это приводит к тому, что если мы желаем сохранить устойчивость, то при вычислениях по схеме (3.13) шаг по времени приходится выбирать очень малым.
Обратимся теперь к разностной схеме (3.14), соответствующей шаблону, изображенному на рис. 4,
Рис. 4. Неявный двухслойный шаблон
и перепишем ее в виде
(3.22)
Посмотрим, какие надо проделать вычисления, чтобы, используя формулы (3.22), можно было вычислить, например, значения на первом временном слое со значениями на нулевом временном слое. Положив в формулах (3.22) n=0, получим:
(3.23)
Формулы (3.23) представляют собой бесконечную систему линейных уравнений относительно неизвестных .
Решение таких систем является сложной и трудоемкой задачей, поэтому разностные схемы (3.14) неудобны для задач Коши на бесконечных отрезках и применяется редко. Однако если отрезок оси x, на котором рассматривается задача Коши, конечен, то есть , а на прямых x=aи x=b дополнительно заданы некоторые ограничения на решение , то разностные схемы вида (3.14) оказываются весьма эффективными. В частности, можно показать, что такие схемы являются абсолютно устойчивыми, то есть устойчивыми при любых значениях .
Если, например, на отрезках прямых x=a и x=b, заданы условия , , то вид системы (3.23) существенно изменится:
(3.24)
Формулы (3.24) представляют собой систему M+1 алгебраических уравнений относительно . Матрица этой системы трехдиагональна и ее можно решить методом прогонки. Отсюда ясно, что реализация неявных разностных схем требует больших вычислительных затрат для вычисления решения на одном временном слое, но таких слоев может быть немного из-за того, что в этом случае отсутствуют ограничения на соотношение . Если пользоваться явной разностной схемой, то вычисление решения на следующем слое осуществляется по рекурсионному правилу и связано с минимальными вычислительными затратами, однако из-за ограничения
число временных слоев в случае явных схем может быть существенно большим по сравнению с числом временных слоев для неявных схем.
Рассмотрим теперь вопрос о сходимости схемы (3.13). Эта схема аппроксимирует задачу (3.5), (3.6) с погрешностью порядка и устойчива при . Поэтому схема (3.13), по теореме об аппроксимации и устойчивости, будет сходящейся. При этом погрешность для приближенного решения будет величиной порядка .
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах