Метод Монте-Карло и его применение

1. Случайная величина Х распределена нормально и её среднее

квадратичное отклонение d известно.

В этом случае с надёжностью g верхняя граница ошибки

, (*)

где n число испытаний (разыгранных значений Х); t – значение аргумента функции Лапласа, при котором , s - известное среднее квадратичное отклонение Х.

2. Случайная величина Х распределена нормально, причём её среднее квадратическое отклонение s неизвестно.

В этом случае с надёжностью g верхняя граница ошибки

, (**)

где n – число испытаний; s – «исправленное» среднее квадратическое отклонение, находят по таблице приложения 3.

3. Случайная величина Х распределена по закону, отличному от нормального.

В этом случае при достаточно большом числе испытаний (n>30) с надёжностью, приближённо равной g, верхняя граница ошибки может быть вычислена по формуле (*), если среднее квадратическое отклонение s случайной величины Х известно; если же s неизвестно, то можно подставить в формулу (*) его оценку s – «исправленное» среднее квадратическое отклонение либо воспользоваться формулой (**). Заметим, что чем больше n, тем меньше различие между результатами, которые дают обе формулы. Это объясняется тем, что при распределение Стьюдента стремится к нормальному.

Из изложенного следует, что метод Монте-Карло тесно связан с задачами теории вероятностей, математической статистики и вычислительной математики. В связи с задачей моделирования случайных величин (в особенности равномерно распределённых) существенную роль играют также методы теории чисел.

Среди других вычислительных методов, метод Монте-Карло выделяется своей простотой и общностью. Медленная сходимость является существенным недостатком метода, однако, могут быть указаны его модификации, которые обеспечивают высокий порядок сходимости при определённых предположениях. Правда, вычислительная процедура при этом усложняется и приближается по своей сложности к другим процедурам вычислительной математики. Сходимость метода Монте-Карло является сходимостью по вероятности. Это обстоятельство вряд ли следует относить к числу его недостатков, ибо вероятностные методы в достаточной мере оправдывают себя в практических приложениях. Что же касается задач, имеющих вероятностное описание, то сходимостью по вероятности является даже в какой-то мере естественной при их исследовании.

Глава 3. Вычисление интегралов методом Монте-Карло.

§1. Алгоритмы метода Монте-Карло для решения интегральных уравнений второго рода.

Пусть необходимо вычислить линейный функционал , где , причём для интегрального оператора K с ядром выполняется условие, обеспечивающее сходимость ряда Неймана: . Цепь Маркова определяется начальной плотностью и переходной плотностью ; вероятность обрыва цепи в точке равна . N – случайный номер последнего состояния. Далее определяется функционал от траектории цепи, математическое ожидание которого равно . Чаще всего используется так называемая оценка по столкновениям , где , . Если при , и при , то при некотором дополнительном условии . Важность достижения малой дисперсии в знакопостоянном случае показывает следующее утверждение: если и , где , то , а . Моделируя подходящую цепь Маркова на ЭВМ, получают статистическую оценку линейных функционалов от решения интегрального уравнения второго рода. Это даёт возможность и локальной оценки решения на основе представления: , где . Методом Монте-Карло оценка первого собственного значения интегрального оператора осуществляется интерациональным методом на основе соотношения . Все рассмотренные результаты почти автоматически распространяются на системы линейных алгебраических уравнений вида . Решение дифференциальных уравнений осуществляется методом Монте-Карло на базе соответствующих интегральных соотношений.

§2. Способ усреднения подынтегральной функции.

В качестве оценки определённого интеграла принимают

,

где n – число испытаний; - возможные значения случайной величины X, распределённой равномерно в интервале интегрирования , их разыгрывают по формуле , где - случайное число.

Дисперсия усредняемой функции равна

,

где , . Если точное значение дисперсии вычислить трудно или невозможно, то находят выборочную дисперсию (при n>30) , или исправленную дисперсию (при n<30) , где .

Страница:  1  2  3  4  5  6 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы