Математические программирование

Среди полученных оценок имеются две отрицательные: Z1-C1=-2<0 и Z2-C2=-4<0. Это означает, что первоначальный опорный план не является оптимальным и его можно улучшить, включив в базис вектор, которому соответствует максимальное по модулю отрицательное число в m+1 строке. Разрешающий вектор-столбец А2. Разрешающий элемент находим по минимальному симплексному отношению. Разрешающий элемен

т – число 10.

Составим вторую симплексную таблицу.

i

Базис

Сбаз

Ао

С1=2

С2=4

С3=0

С4=0

С5=0

А1

А2

А3

А4

А5

1

А2

4

42,5

1,1

1

0,1

0

0

2

А4

0

237,5

1,5

0

-0,5

1

0

3

А5

0

295

1,4

0

-0,6

0

1

m+1

Zj-Cj

170

2,4

0

0,4

0

0

Просмотрев m+1 строку, убеждаемся, что опорный план – оптимален.

Оптимальный план предусматривает изготовление 42,5 ед.изделия В и не предусматривает изготовление изделий А. Изготовление изделий А привело бы к уменьшению прибыли на 2,4 у.е. Сырье 1-го вида используется полностью. Неиспользованными остается 450-237,5=212,5 тонн 2-го вида и 550-295=255 тонн 3-го вида сырья. Максимальная прибыль составляет 170 у.е.

Решение задачи на компьютере

Выполним следующие действия:

– В ячейку А1 вводим формулу для целевой функции=2*х1+4*х2

– В ячейку А3 вводим формулу для ограничения: =11*с1+10*с2.

– В ячейку А4 вводим формулу для ограничения: =7*с1+5*с2.

– В ячейку А3 вводим формулу для ограничения: =8*с1+6*с2.

– В ячейку С1:С2 вводим начальные значения переменных (0:0).

–Выполним команду Сервис > Поиск решения.

Следовательно, план выпуска продукции, включающий изготовление 42,5 изделий В является оптимальным. При данном плане выпуска изделий полностью используется сырье 1-го вида и остаётся неиспользованным 450-237,5=212,5 тонн 2-го вида и 550-295=255 тонн 3-го вида сырья, а стоимость производимой продукции равна 170 у.е.

ЛАБОРАТОРНАЯ РАБОТА №3

по мат.программированию

«Транспортная задача»

Имеются 3 пункта поставки однородного груза А1, А2, А3 и 5 пунктов В1, В2, В3, В4, В5 потребления этого груза. На пунктах А1-А3 находится груз соответственно в количестве а1-а3 тонн. В пункты В1-В5 требуется доставить соответственно в1-в5 тонн груза. Стоимости перевозок 1 тонны груза между пунктами поставки и пунктами потребления приведены в матрице D. Найти такой план закрепления потребителей за поставщиками однородного груза, чтобы общие затраты по перевозкам были минимальными.

Пункты

поставки

Пункты потребления

Запасы

В1

В2

В3

В4

В5

А1

12

10

15

12

13

350

А2

16

14

17

10

8

150

А3

15

10

13

14

15

280

Потребн.

100

120

200

160

200

 

Математическая модель задачи

Математическая модель транспортной задачи состоит в нахождении такого неотрицательного решения системы линейных уравнений

при которых целевая функция

F=12*x11+10*x12+15*x13+12*x14+13*x15+16*x21+14*x22+17*x23+10*x24+8*x25+15*x31+10*x32+13*x33+14*x34+15*x35

принимает минимальное значение.

Опорный план найдем методом северо-западного угла.

Пункты поставки

Пункты потребления

Запасы

В1

В2

В3

В4

В5

А1

         

350

А2

         

150

А3

         

280

Потребн.

100

120

200

160

200

 

Страница:  1  2  3  4  5 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы