Элементарное изложение отдельных фрагментов теории подгрупповых функторов
Содержание
Введение
Перечень условных обозначений
1. Общие определения и обозначения
2. Используемые результаты
3. Определения и основные примеры подгрупповых функторов
4. Решетки подгрупповых функторов
5. Классы групп с заданными решетками подгрупповых функторов
Заключение
Список использованных источников
Введение
Согласно теореме о со
ответствии между подгруппами основной группы, содержащие нормальную подгруппу и подгруппами из факторуппы существует взаимнооднозначное соответствие, при котором нормальным подгруппам соответствуют нормальные подгруппы, субнормальным подгруппам соответствуют субнормальные и т.д.
Этот факт лежит в основе следующего определения, введеного в монографии А.Н. Скибы "Алгебра формаций." (Мн.: Беларуская навука, 1997).
Пусть некоторый класс групп. Составим с каждой группой некоторую систему ее подгрупп . Будем говорить, что - подгрупповой -функтор или подгрупповой функтор на , если выполняются следующие условия:
1) для всех ;
2) для любого эпиморфизма , где А,и для любых групп и имеет место и
Значение этого понятия связано прежде всего с тем, что подгрупповой функтор выделяет в группе те системы подгрупп, которые инвариантны относительно гомоморфизма и поэтому удобны при проведении индуктивных рассуждений.
Целью данной дипломной работы является элементарное изложение отдельных фрагментов теории подгрупповых функтороф, доступное для понимания в рамках специальных курсов математических факультетов.
Дипломная работа состоит из введения, общей части, включающей 5 параграфов, заключения и списка используемой литературы.
В первом параграфе приводятся общие определения и обозначения.
Во втором параграфе даются те известные результаты теории групп, которые используются в основном тексте дипломной работы.
Третий параграф посвящен изучению основных понятий подгрупповых функторов и рассмотрению примеров. Здесь из различных источников собраны и систематизированы основные определения и примеры подгрупповых функторов.
В параграфе четыре систематизирован теоретический материал по теме "Решетки подгрупповых функторов".
Параграф пять изучает свойства конечных групп в зависимости от свойств соответствующих решеток подгрупповых функторов.
Перечень условных обозначений
- принадлежность элемента множеству;
- знак включения множеств;
- знак строгого включения;
и - соответственно знаки пересечения и объединения множеств;
- пустое множество;
- множество всех простых чисел;
- некоторое множество простых чисел, т.е. ;
Пусть - группа. Тогда:
- порядок группы ;
- порядок элемента группы ;
- коммутант группы , т.е. подгруппа, порожденная коммутаторами всех элементов группы ;
- является подгруппой группы ;
- является собственной подгруппой группы ;
- является максимальной подгруппой группы ;
- является нормальной подгруппой группы ;
- является субнормальной подгруппой группы ;
- является минимальной нормальной подгруппой группы ;
- факторгруппа группы по подгруппе ;
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах