Элементарное изложение отдельных фрагментов теории подгрупповых функторов
Теперь мы предположим, что решетка является цепью. Пусть и - конечная группа. Предположим, что порядок гр
уппы делится по крайней мере на два простых числа и . Пусть
И пусть - силовская -подгруппа в и - силовская -подгруппа в , соответственно. Тогда
Значит, и . Это показывает, что не является цепью, что противоречит нашему предположению. Следовательно, найдется такое простое число , что каждая конечная группа из является -группой.
Мы теперь покажем, что каждая группа в является абелевой. Предположим, что это не так и пусть - неабелева группа в . В этом случае некоторая ее подгруппа , порожденная элементами , является конечной неабелевой -группой. Так как по условию класс является наследственным, то . Пусть , где - класс всех абелевых групп. Поскольку , то , и поэтому . Следовательно, мы имеем . Теперь пусть где . И пусть - коммутант подгруппы , . Тогда и ясно, что . Значит, . Но поскольку , мы имеем . Таким образом, не является цепью. Полученное противоречие показывает, что каждая группа в является абелевой. Аналогично можно показать, что экспонента каждой группы из делит число .
Теорема доказана.
Пересечение всех конечных многообразий, содержащих данную группу , называется конечным многообразием, порожденным . Из теоремы 20.8 вытекает
Теорема 20.9. Пусть - конечная группа и - конечное многообразие, порожденное . Тогда в том и только в том случае является элементарной абелевой -группой, когда решетка является цепью.
Пусть и - подгрупповые -функторы. Определим произведение при помощи следующего правила
Понятно, что подгрупповой -функтор является замкнутым тогда и только тогда, когда . Мы используем символ для обозначения произведения , в котором имеется сомножителей.
Пусть - произвольное непустое множество простых чисел. Подгруппа группы называется -холловской, если ее индекс в не делится ни на одно число из , а среди простых делителей ее порядка нет ни одного не входящего в . Символом обозначают множество всех простых чисел, отличных от .
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах