Элементарное изложение отдельных фрагментов теории подгрупповых функторов

- индекс подгруппы в группе ;

- нормализатор подгруппы в группе ;

Если и - подгруппы группы , то:

- и изоморфны.

Пусть - группа, и , тогда:

- правый смежный класс,

- левый смежный класс;

- совокупность всех нормальных подгрупп группы ;

- группа порядка ;

Скобки применяются для обозначения подгрупп, порождённых некоторым множеством элементов или подгрупп.

- подгруппа, порожденная элементами и .

- подгрупповой - функтор или подгрупповой функтор на , где - некоторый класс групп;

- совокупность всех - подгрупп группы ;

- тривиальный подгрупповой - функтор;

- единичный подгрупповой - функтор;

- ограничение подгруппового - функтора на класс групп ;

- пересечение системы подгрупповых - функторов ;

- решётка всех подгрупповых - функторов;

- решётка всех замкнутых подгрупповых - функторов;

Прописными готическими буквами обозначаются классы групп, т.е. всякое множество групп, содержащее вместе с каждой своей группой и все группы, ей изоморфные, в частности, формации, т.е. классы групп, замкнутые относительно факторгрупп и подпрямых произведений.

Стандартные обозначения, закрепленные за некоторыми классами групп:

- класс всех групп;

- класс всех абелевых групп;

1. Общие определения и обозначения

Бинарной алгебраической операцией на множестве называют отображение декартова квадрата во множество . Если - бинарная операция на , то каждой упорядоченной паре элементов из соответствует однозначно определенный элемент . Бинарную операцию на обозначают одним из символов: и т.д. Если, например, вместо условимся писать , то вместо пишем .

Говорят, что на множестве X определена бинарная операция (умножение), если для всех .

Если для всех , то операция называется ассоциативной.

Если для всех , то операция называется коммутативной.

Элемент называется единичным, если для всех .

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы