Элементарное изложение отдельных фрагментов теории подгрупповых функторов

Обратным к элементу называется такой элемент , что .

Полугруппой называется непустое множество с бина

рной алгебраической операцией (умножение), удовлетворяющей следующим требованиям:

(1) операция определена на , т.е. для всех и ;

(2) операция ассоциативна, т.е. для любых .

Группой называется непустое множество с бинарной алгебраической операцией (умножением), удовлетворяющей следующим требованиям:

(1) операция определена на , т.е. для всех и ;

(2) операция ассоциативна, т.е. для любых ;

(3) в существует единичный элемент, т.е. такой элемент , что для всех ;

(4) каждый элемент обладает обратным, т.е. для любого существует такой элемент , что .

Группу с коммутативной операцией называют коммутативной или абелевой.

Если - конечное множество, являющееся группой, то G называют конечной группой, а число элементов в - порядком группы .

Также группой называется непустое множество с бинарной алгебраической операцией (умножением), удовлетворяющей следующим требованиям:

(1) операция определена на ;

(2) операция ассоциативна;

(3) уравнения , имеют решения для любых элементов .

Подмножество группы называется подгруппой, если - группа относительно той же операции, которая определена на группе . Для подгруппы используется следующее обозначение: . Запись читается так: - подгруппа группы .

Также можно дать следующее определение подгруппы конечной группы. Непустое подмножество конечной группы называется подгруппой, если для всех и

Собственной называется подгруппа, отличная от группы.

Пусть - группа, и . Правым смежным классом группы по подгруппе называется множество всех элементов группы вида , где пробегает все элементы подгруппы .

Аналогично определяется левый смежный класс

Если - конечная группа, то число различных правых смежных классов по подгруппе также будет конечно, оно называется индексом подгруппы в группе и обозначается через .

Подгруппа называется нормальной подгруппой группы , если для всех . Запись читается так: - нормальная подгруппа группы Равенство означает, что для любого элемента существует элемент такой, что .

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы