Интерполирование и приближение функций
1. Разделенные разности
Часто экспериментальные данные функциональной зависимости представляются таблицей, в которой шаг по независимой переменной не постоянен. Для работы с таким представлением функции конечные разности и конечно-разностные операторы не пригодны. В этом случае первостепенную роль играют разделенные разности.
Разделенную разность функции f(x) для
некоторых двух точек и определяют следующей дробью:
Для построения степенного многочлена, проходящего через заданные точки, необходимо иметь число точек на единицу больше, чем степень многочлена. Согласно определению разделенной разности число их для n точек равно числу сочетаний из n по 2. Это во много раз больше, чем необходимо для построения кривых, проходящих через n точек. Из опыта работы с конечными разностями видно, что разделенных разностей из всего множества достаточно выбрать всего n, но выбрать так, чтобы в их образование входили все (n+1) точек таблицы.
Вполне разумно вычислять разделенные разности только для соседних значений функции в таблице. В этом случае говорят об упорядоченных разделенных разностях. Аргументу табличной функции присваиваются индексы из чисел натурального ряда, начиная с нуля, в результате чего обозначения разделенных разностей для i-той строки таблицы будут .
Повторная разность от разделенной разности есть разделенная разность второго порядка:
В общем случае разделенная разность n-го порядка имеет вид:
2. Интерполяционный многочлен Лагранжа
Произведения из скобочных сомножителей в знаменателе каждого слагаемого напоминают своим видом некий степенной многочлен от переменной , который своими корнями имеет значения , исключая . Многочлен от x с корнями в этих же точках, включая и , будет иметь вид:
Удаляя тот или иной сомножитель из , можно по желанию исключить ненужный нуль многочлена. Если взять i-тое слагаемое без из выражения для разделенной разности n-го порядка и умножить его на , в котором отсутствует сомножитель , то многочлен степени n будет обладать следующими свойствами:
Если умножить на , то полученный многочлен степени n будет проходить через точку с координатами и будет равен нулю во всех точках . Сумма таких многочленов по всем определяет интерполяционный многочлен Лагранжа степени n.
.
3. Интерполяционный многочлен Ньютона
Интерполяционный многочлен в форме многочлена Лагранжа не удобен в случаях, когда необходимо добавлять экспериментальные данные в таблицу с целью повышения точности интерполяции. При этом необходимо проводить все вычисления заново.
Если задачу поставить так, что добавление лишней точки требовало бы лишь добавки некоторого многочлена степени (n+1) к многочлену Лагранжа n-й степени, то эту добавку можно искать, выполнив в общем виде преобразование разности двух многочленов Лагранжа: степени (n+1) и n. Несложные преобразования приводят к следующему соотношению для добавочного многочлена степени (n+1):
,
где – многочлен степени (n+1),
– разделенная разность (n+1)-го порядка.
Если считать разделенную разность нулевого порядка равной значению функции в точке , то
Поступая аналогичным образом и находя последовательно , в конце концов, получим общее выражение для другой формы представления интерполяционного многочлена Лагранжа, которая в литературе называется интерполяционным многочленом Ньютона для неравных интервалов и записывается так:
Надо отметить, что дополнительную точку в таблицу необходимо записывать в самую нижнюю строку таблицы, чтобы не нарушить уже имеющегося упорядочения разностей и ускорить вычисление новых.
И, наконец, надо отметить, что и многочлен Лагранжа, и многочлен Ньютона удобны для вычислений, но после раскрытия скобок и приведения подобных дают один и тот же степенной многочлен.
4. Аппроксимация функций методом наименьших квадратов
Основным недостатком интерполяционных многочленов является наличие у них большого числа экстремумов и точек перегибов, что определяется суммированием в них многочленов , n раз меняющих свой знак. Кроме того, исходные табличные значения функции заданы неточно по разным причинам, поэтому строить многочлены выше 4-5-й степени, зная, что из теоретических исследований функция в интервале таблицы совсем не такая, не имеет особого смысла.
Если табличные значения функции можно интерпретировать как теоретическое значение плюс погрешность, то, задав некоторый критерий близости теоретической кривой к заданному множеству табличных точек, можно найти нужное число параметров этой кривой.
Наиболее популярным критерием близости является минимум среднего квадрата отклонения:
,
где – точка экспериментальных данных из таблицы,
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах