Моделирование линейных непрерывных систем в среде LabVIEW
В этих выражениях использованы различные обозначения для выходных переменных и принято x = 1 (t) = 1, так как t > 0.
На рис.2 показана эта структура. В формулах Δt обозначена как dt.
| idth=398 valign=top >
|
Рис.2 |
Рис.3 |
Напомним, что для образования входных и выходных терминалов нужно щелкнуть ПКМ на границе структуры в предполагаемом месте терминала и в раскрывшемся меню выбрать Add Input или Add Output.
Для формирования массивов выходных переменных структура Formula Node помещается внутрь структуры For Loop, при этом задержанные на интервал дискретизации отсчеты выходных переменных y1 и v1 получаются с помощью регистра сдвига (рис.3).
Прямой метод Эйлера при большом интервале дискретизации может дать неустойчивое решение. Это случится, если отклонение решения от входного процесса xk - 1 - yk - 1 (см формулу (5)) даст такое значение yk. что отклонение на следующем шаге xk - yk будет той же величины, что и предыдущее, но обратным по знаку. Решение будет колебательным незатухающим.
| ||
Рис.4 |
В предыдущих лабораторных работах развертка графического индикатора Graph осуществлялась автоматически в соответствии с типом данных, подаваемых на вход графического индикатора. В этой работе мы сформируем данные так, чтобы по горизонтальной оси откладывалось время. Для этого надо сформировать кластер, куда кроме массива данных будет входить информация о времени. Используем ВП Bundle (Объединить), который находится в подпалитре Cluster (Кластер). На его входы element подаются (см. рис.4): на верхний - время начала развертки - 0; на средний - интервал дискретизации - Δt; на нижний - массив данных
Замена непрерывной передаточной функции дискретной
Если математическая модель системы представляется в виде соединения линейных и нелинейных блоков, то для описания линейных блоков чаще всего используется передаточная функция K (p). В этом случае цифровую модель непрерывного линейного блока можно получить, заменив непрерывную передаточную функцию K (p) дискретной K (z).
Для этого можно использовать связь между непрерывными и дискретными изображениями, устанавливаемую дискретным преобразованием Лапласа (Z-преобразованием). В таблице 1 приведена эта связь для передаточных функций, используемых в данной лабораторной работе.
Таблица 1
K (p) |
1 p |
1 p2 |
1 (1 + pT) |
K (z) |
Δt z (z - 1) |
(Δt) 2 z (z - 1) 2 |
(Δt/T) z (z - e-Δt/T) |
Заметим, что здесь комплексная переменная z определяется как z = epΔt и является оператором опережения на интервал дискретизации. Соответственно z-1 - это оператор задержки на интервал дискретизации.
Другой путь предусматривает непосредственный переход от комплексной переменной p к комплексной переменной z заменой операции аналогового интегрирования 1/p операцией дискретного интегрирования. При дискретном описании аналогового интегрирования можно оперировать только с значениями входного и выходного процессов в моменты дискретизации. На рис.5 показано, как это можно сделать, используя численное интегрирование по методу прямоугольников и по методу трапеций.
Значение выходного процесса yk интегратора в момент времени t = kΔt отличается от предыдущего значения yk-1 на величину площади S под кривой x (t) (заштрихованная фигура на рис.5 а).
| ||||||
yk = yk-1 + S |
yk = yk-1 + Δt xk-1 |
yk = yk-1 + Δt xk |
yk = yk-1 + +Δt (xk + xk-1) /2 | |||
а) |
б) |
в) |
г) | |||
Рис.5 |
По методу прямоугольников площадь можно определить по разному в зависимости от того, какую величину принять за высоту прямоугольника: xk-1 или xk (рис.5.5 б и рис.5.5 в). На рис.5.5 г) показано, как вычисляется эта площадь по методу трапеций. Рекуррентные формулы для интегрирования приведены под рисунками.
По этим формулам можно записать дискретные передаточные функции. Поясним это на примере интегрирования по методу трапеций:
yk = yk-1 + Δt (xk + xk-1) /2.
Перенесем yk-1 в левую часть и возьмем от полученного выражения Z-преобразование. Учитывая, что запаздывание на интервал дискретизации в области оригиналов соответствует умножению на z-1 в области изображений, получим:
Y (z) - z-1Y (z) = (Δt/2) (X (z) + z-1X (z)).
Дискретная передаточная функция - это отношение Z-изображений выходной и входной переменных, поэтому
K (z) = Y (z) /X (z) = (Δt/2) (1 + z-1) / (1 - z-1) = (Δt/2) (z + 1) / (z - 1).
В таблице 2 приведены выражения дискретных передаточных функций для различных методов численного интегрирования для одного и двух интеграторов.
Другие рефераты на тему «Программирование, компьютеры и кибернетика»:
Поиск рефератов
Последние рефераты раздела
- Основные этапы объектно-ориентированного проектирования
- Основные структуры языка Java
- Основные принципы разработки графического пользовательского интерфейса
- Основы дискретной математики
- Программное обеспечение системы принятия решений адаптивного робота
- Программное обеспечение
- Проблемы сохранности информации в процессе предпринимательской деятельности