Методы извлечения знаний

Страховые компании в течение ряда лет накапливают большие объемы данных. Здесь обширное поле деятельности для методов Data Mining:

- страховые компании могут снизить уровень мошенничества, отыскивая определенные стереотипы в заявлениях о выплате страхового возмещения, характеризующих взаимоотношения между юристами, врачами и заявителями.

- путем выявления сочетаний факторов, связанных с

оплаченными заявлениями, страховщики могут уменьшить свои потери по обязательствам. Известен случай, когда в США крупная страховая компания обнаружила, что суммы, выплаченные по заявлениям людей, состоящих в браке, вдвое превышает суммы по заявлениям одиноких людей. Компания отреагировала на это новое знание пересмотром своей общей политики предоставления скидок семейным клиентам.

Data Mining может применяться во множестве других областей:

v развитие автомобильной промышленности. При сборке автомобилей производители должны учитывать требования каждого отдельного клиента, поэтому им нужны возможность прогнозирования популярности определенных характеристик и знание того, какие характеристики обычно заказываются вместе;

v политика гарантий. Производителям нужно предсказывать число клиентов, которые подадут гарантийные заявки, и среднюю стоимость заявок;

v поощрение часто летающих клиентов. Авиакомпании могут обнаружить группу клиентов, которых данными поощрительными мерами можно побудить летать больше. Например, одна авиакомпания обнаружила категорию клиентов, которые совершали много полетов на короткие расстояния, не накапливая достаточно миль для вступления в их клубы, поэтому она таким образом изменила правила приема в клуб, чтобы поощрять число полетов так же, как и мили.

2.1.4 Типы закономерностей

Выделяют пять стандартных типов закономерностей, которые позволяют выявлять методы Data Mining: ассоциация, последовательность, классификация, кластеризация и прогнозирование.

Типы закономерностей, выявляемых методами Data Mining:

• ассоциация;

• последовательность;

• кластеризация;

• классификация;

• прогнозирование.

Ассоциация имеет место в том случае, если несколько событий связаны друг с другом. Например, исследование, проведенное в супермаркете, может показать, что 65% купивших кукурузные чипсы берут также и "кока-колу", а при наличии скидки за такой комплект "колу" приобретают в 85% случаев. Располагая сведениями о подобной ассоциации, менеджерам легко оценить, насколько действенна предоставляемая скидка.

Если существует цепочка связанных во времени событий, то говорят о последовательности. Так, например, после покупки дома в 45% случаев в течение месяца приобретается и новая кухонная плита, а в пределах двух недель 60% новоселов обзаводятся холодильником.

С помощью классификации выявляются признаки, характеризующие группу, к которой принадлежит тот или иной объект. Это делается посредством анализа уже классифицированных объектов и формулирования некоторого набора правил.

Кластеризация отличается от классификации тем, что сами группы заранее не заданы. С помощью кластеризации средства Data Mining самостоятельно выделяют различные однородные группы данных.

Основой для всевозможных систем прогнозирования служит историческая информация, хранящаяся в БД в виде временных рядов. Если удается построить найти шаблоны, адекватно отражающие динамику поведения целевых показателей, есть вероятность, что с их помощью можно предсказать и поведение системы в будущем.

2.1.5 Классы систем Data Mining

Data Mining является мультидисциплинарной областью, возникшей и развивающейся на базе достижений прикладной статистики, распознавания образов, методов искусственного интеллекта, теории баз данных и др. (типов закономерностей, выявляемых методами Data Mining). Отсюда обилие методов

и алгоритмов, реализованных в различных действующих системах Data Mining. Многие из таких систем интегрируют в себе сразу несколько подходов. Тем не менее, как правило, в каждой системе имеется какая-то ключевая компонента, на которую делается главная ставка. Ниже приводится классификация указанных ключевых компонент на основе работы [36]. Выделенным классам дается краткая характеристика.

Распознавание образов

Визуализация данных

Нейросети

Циліндр: Data Mining

Экспертные системы

Підпис: Статистика

Информацион-ный поиск

Эфективные вычесления

Оперативная аналитическая обработка

Хранилище данных

Теория из баз данных

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22 


Другие рефераты на тему «Программирование, компьютеры и кибернетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы