Методы извлечения знаний

Рис. 2.3 - Data Mining - мультидисциплинарная область

Популярные продукты для DATA Mining:

• Lementine;

• PRW;

• CainSmarts;

• Datamind;

• M1 model 1;

• psOLPARS;

• Cart;

• Cognos;

• S-Plus;

• Wizwhu;

• NeuroShell 2.

Предметно-ориентированные аналитические системы.

Предметно-ориентированные аналитические системы очень разнообразны. Наибо

лее широкий подкласс таких систем, получивший распространение в области исследования финансовых рынков, носит название "технический анализ". Он представляет собой совокупность нескольких десятков методов прогноза динамики цен и выбора оптимальной структуры инвестиционного портфеля, основанных на различных эмпирических моделях динамики рынка. Эти методы часто используют несложный статистический аппарат, но максимально учитывают сложившуюся своей области специфику (профессиональный язык, системы различных индексов и пр.). На рынке имеется множество программ этого класса. Как правило, они довольно дешевы (обычно $300-1000).

Статистические пакеты

Последние версии почти всех известных статистических пакетов включают наряду с традиционными статистическими методами также элементы Data Mining. Но основное внимание в них уделяется все же классическим методикам - корреляционному, регрессионному, факторному анализу и другим. Самый свежий детальный обзор пакетов для статистического анализа приведен на страницах ЦЭМИ http://is1.cemi.rssi.ru/ruswin/index.htm. Недостатком систем этого класса считают требование к специальной подготовке пользователя. Также отмечают, что мощные современные статистические пакеты являются слишком "тяжеловесными" для массового применения в финансах и бизнесе. К тому же часто эти системы весьма дороги - от $1000 до $15000.

Есть еще более серьезный принципиальный недостаток статистических пакетов, ограничивающий их применение в Data Mining. Большинство методов, входящих в состав пакетов опираются на статистическую парадигму, в которой главными фигурантами служат усредненные характеристики выборки. А эти характеристики, как указывалось выше, при исследовании реальных сложных жизненных феноменов часто являются фиктивными величинами.

В качестве примеров наиболее мощных и распространенных статистических пакетов можно назвать SAS (компания SAS Institute), SPSS (SPSS), STATGRAPICS (Manugistics), STATISTICA, STADIA и другие.

2.2 Кластерный анализ

2.2.1 Концептуальная кластеризация как метод извлечения знаний из баз данных.

Термин кластерный анализ (впервые ввел Tryon, 1939) в действительности включает в себя набор различных алгоритмов классификации. Общий вопрос, задаваемый исследователями во многих областях, состоит в том, как организовать наблюдаемые данные в наглядные структуры, т.е. развернуть таксономии. Например, биологи ставят цель разбить животных на различные виды, чтобы содержательно описать различия между ними. В соответствии с современной системой, принятой в биологии, человек принадлежит к приматам, млекопитающим, амниотам, позвоночным и животным. В этой классификации, чем выше уровень агрегации, тем меньше сходства между членами в соответствующем классе.

Фактически, кластерный анализ является не столько обычным статистическим методом, сколько "набором" различных алгоритмов "распределения объектов по кластерам". Существует точка зрения, что в отличие от многих других статистических процедур, методы кластерного анализа используются в большинстве случаев тогда, когда вы не имеете каких-либо априорных гипотез относительно классов, но все еще находитесь в описательной стадии исследования. Согласно теории кластерный анализ определяет "наиболее возможно значимое решение". Поэтому проверка статистической значимости в действительности здесь неприменима, даже в случаях, когда известны p-уровни).

Для решения задачи кластеризации (clustering problem) необходим набор неклассифицированных объектов и средства измерения подобия объектов. Целью кластеризации является организация объектов в классы, удовлетворяющие некоторому стандарту качества, например на основе максимального сходства объектов каждого класса [11].

Числовая таксономия (numeric taxonomy) - один из первых подходов к решению задач кластеризации. Числовые методы основываются на представлении объектов с помощью набора свойств, каждое из которых может принимать некоторое числовое значение. При наличии корректной метрики подобия каждый объект (вектор из n значений признаков) можно рассматривать как точку в n-мерном пространстве. Мерой сходства двух объектов можно считать расстояние между ними в этом пространстве.

Многие алгоритмы кластеризации, как и многие алгоритмы обучения с учителем, определяют категории в терминах необходимых и достаточных условий принадлежности к этим категориям. Эти условия представляют собой наборы признаков, свойственных каждому элементу категории и отличных от признаков другой категории. Таким образом можно описать многие категории, однако человеческие категории не всегда соответствуют этой модели. На самом деле они характеризуются большей гибкостью и более разветвлённой структурой. Человеческие категории определяются сложной системой сходства между элементами, а не необходимыми и достаточными условиями принадлежности членов. При такой категоризации может не существовать свойств, общих для всех элементов класса. Эти проблемы учтены в системе COBWEB [10]. В данной системе реализован инкрементальный алгоритм обучения, не требующий представления всех обучающих примеров до начала обучения. Во многих приложениях обучаемая система получает данные, зависящие от времени. В этом случае она должна строить полезные определения понятий на основе исходных данных и обновлять эти описания с появлением новой информации. В системе COBWEB также решена проблема определения корректного числа кластеров. Подход, когда количество кластеров определяется пользователем нельзя назвать гибким. В системе COBWEB для определения количества кластеров, глубины иерархии и принадлежности категории новых экземпляров используется глобальная метрика качества. При предъявлении нового экземпляра система COBWEB оценивает качество отнесения этого примера к существующей категории и модификации иерархии категорий в соответствии с новым представителем. Критерием оценки качества классификации является полезность категории (category utility). Критерий полезности категории был определён при исследовании человеческой категоризации. Он учитывает влияние категорий базового уровня и другие аспекты структуры человеческих категорий.

Критерий полезности категории максимизирует вероятность того, что два объекта, отнесённые к одной категории, имеют одинаковые значения свойств и значения свойств для объектов из различных категорий отличаются. Полезность категории определяется формулой:

Значения суммируются по всем категориям , всем свойствам и всем значениям свойств . Значение называется предсказуемостью (predictability). Это вероятность того, что объект, для которого свойство принимает значение , относится к категории . Чем выше это значение, тем вероятнее, что свойства двух объектов, отнесённых к одной категории, имеют одинаковые значения. Величина называется предиктивностью (predictiveness). Это вероятность того, что для объектов из категории свойство принимает значение . Чем больше эта величина, тем менее вероятно, что для объектов, не относящихся к данной категории, это свойство будет принимать указанное значение. Значение – это весовой коэффициент, усиливающий влияние наиболее распространённых свойств. Благодаря совместному учёту этих значений высокая полезность категории означает высокую вероятность того, что объекты из одной категории обладают одинаковыми свойствами, и низкую вероятность наличия этихсвойств у объектов из других категорий [11].

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22 


Другие рефераты на тему «Программирование, компьютеры и кибернетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы