Коррозия на Оренбургском газоперерабатывающем заводе
5. Механизм сероводородного растрескивания оборудования и трубопроводов
Как было отмечено выше, сероводородное растрескивание оборудования ОГПЗ инициируется концентраторами напряжений: дефекты сварных соединений и технологические дефекты основного металла, резьбы, следы от ключей, коррозионные язвы и т.п. Результаты лабораторных испытаний сварных образцов из стали 20 также свидетельствуют о
зарождении сероводородного растрескивания от дефектов, которые более чем в 10 раз снижают долговечность сварных соединений. Сопротивление CP качественных сварных соединений не ниже, чем основного металла, кроме того, за 20 лет эксплуатации сварных конструкций в металле швов в отличие от основного проката не обнаружено ни одного случая водородного расслоения. Это объясняется применением электродных материалов с низким содержанием серы, отсутствием в шве текстуры, а также тем, что условия плавления и кристаллизации шва способствуют образованию мелких сульфидных включений глобулярной формы и равномерному их распределению по литому металлу шва. В прокате из стали типа сталь 20 оборудования ОГПЗ наблюдается, особенно в срединной части стенки конструкции, значительное количество сульфидных включений дискообразной формы длиной от долей до десятков миллиметров. На границах раздела сульфид - матрица при охлаждении после завершения кристаллизации возможно образование микрополостей, так как коэффициент термического расширения сульфидов FeS - MnS больше, чем у ферритной матрицы (18х10-6 К-1 против 11,810-6 К-1). Металл матрицы в зоне границы раздела фаз, являясь областью объемного растяжения кристаллической решетки, может выполнять роль коллекторов для водорода. Образующийся в результате контакта стали с сероводородсодержащей средой водород, попадая в эти несплошности, молизуется, вызывая водородное растрескивание металла. Трещины водородного расслоения зарождаются внутри металла на границах раздела матрица - включение и распространяются, как правило, межкристаллитно в направлении, параллельном его поверхности; при взаимодействии этих трещин-расслоений возникает ступенчатая магистральная трещина, пронизывающая часть или весь металл по сечению. В отличие от водородного расслоения при сероводородном растрескивание трещины зарождаются с поверхности, контактирующей с сероводородсодержащей средой, или в приповерхностных слоях и распространяются преимущественно перпендикулярно этой поверхности, т.е. нормально к действующим напряжениям. Магистральная трещина сероводородного растрескивания при развитии соединяет отдельные трещины, возникшие вследствие молизации водорода в коллекторах и ориентированные вдоль проката параллельно приложенным напряжениям.
Металлографическими и фрактографическими исследованиями сероводородного растрескивания изделий и образцов, испытанных при MP (3,6х10-6 м/с2) в натурной сероводородсодержащей 72 среде ОГПЗ, выявлены следующие характерные особенности сероводородного растрескивания. В отличие от коррозионного растрескивания, при сероводородном растрескивании не наблюдается значительных следов электрохимического растворения, и сероводородное растрескивание может зарождаться в приповерхностных объемах металла. Зона субкритического роста трещин характеризуется межзеренным разрушением, наличием вторичных трещин, нормальных к плоскости магистральной трещины , т.е. параллельных растягивающим напряжениям. Зарождение и развитие вторичных трещин в значительной мере определяется состоянием границ зерен и наличием вблизи развивающейся трещины неметаллических включений, следы которых наблюдаются в изломах. Макроскопическая трещина образуется путем объединения многих межзеренных микротрещин. Их поверхность состоит из гладких фасеток, разделенных множеством гребешков или ступенек, отделяющих различные уровни продвижения магистральной трещины. Общее направление гребешков указывает на то, что трещина распространяется от поверхности внутрь, сливаясь с микротрещинами, периодически зарождающимися на границах зерен. Наблюдаются и самостоятельные микротрещины, не объединенные в более крупную трещину. Атомарный водород локализуется на границах раздела матрица - включение, а также в межзеренных коллекторах, где идет реакция его молизации и возникают микрорасслоения - микротрещины. Последние под действием внутреннего давления водорода и внешней нагрузки увеличиваются, перемычки между ними разрушаются с последующим образованием магистральной трещины.
Таким образом, сероводородное растрескивание стальных конструкций, контактирующих с сероводородсодержащими средами, происходит, как и водородное растрескивание-расслоени, межкристаллитно. В настоящее время преобладает "островковая" модель границ, согласно которой граница зерен состоит из чередующихся островков с хорошим и плохим сопряжением кристаллических решеток смежных кристаллитов - каналы вакансий (микро-несплошностей). Строение и протяженность участков плохого сопряжения зависят от угла разориентировки смежных зерен. Малоугловые границы (угол до 15°) представляют как ряд отдельных дислокаций и сопряженных узлов решетки между дислокациями, сопровождающими ее деформацией. Болыпеугловые границы (угол больше 15°) рассматривают как область скопления дислокаций, а сопряжение узлов происходит в результате значительных локальных искажений решетки, при этом область искажений может достигать до 100 параметров решетки. Химический состав приграничных слоев заметно отличается от состава кристаллитов, вследствие обогащения границ зерен фосфором и другими атомами примесей. Вероятность адсорбции водорода на границе увеличивается из-за большей энергии связи водорода с атомами примесей (Р, S), чем с железом, поэтому концентрация водорода на границе зерен выше, чем в кристаллитах. Растворимость водорода в межзеренном веществе на три порядка больше, чем в б-железе. Границы зерен являются также предпочтительными путями диффузии водорода в стали при ее наводороживании. Причем, диффузионный водород неравномерно распределяется по толщине металла, наибольшее его содержание наблюдается в слое толщиной 0,2-0,3 мм, прилегающем к поверхности контакта с наводороживающей средой, где образуется большое число коллекторов, заполненных молекулярным водородом. При этом абсорбция сталью водорода зависит от ее структурно-физического состояния.
Холоднодеформированная мягкая сталь может поглотить в 100 раз больше водорода, чем отожженная. В районе концентратора напряжения скорость накопления водорода в стали возрастает в 10 раз и более по сравнению с областями равномерных напряжений. Известно также, что водород диффундирует в области трехосных растягивающих напряжений, которые, например, для стали находятся на расстоянии 0,3-0,4 мм от вершины трещины. При действии механических напряжений 76 диффузия водорода в сталь увеличивается, особенно ускоряется диффузия при напряжениях, вызывающих пластические деформации стали. Последнее объясняют усилением проникновения водорода вдоль плоскостей скольжения и через связанные с ними дислокации и скопление вакансий.
Анализ сероводородного растрескивания натурных конструкций ОГПЗ и образцов с учетом существующих представлений о механизме сероводородного растрескивания и свойствах границ зерен позволил заключить, что очагами зарождения микротрещин при контакте сталей с сероводородсодержащей средой, наряду с границами раздела матрица - неметаллическое включение, служат островки границ с плохим сопряжением кристаллических решеток смежных кристаллитов. Эти островки (каналы вакансий) являются микрополостями-микро-концентраторами, в области которых под действиями остаточных напряжений или внешних нагрузок (особенно при наличии концентраторов напряжений) возникает трехосное напряженное состояние. Водород находится в металле в виде ионов, которые, попадая в микрополости через границы зерен и из кристаллической решетки, захватывают из электронного облака металла электроны и превращаются в атомы, уменьшая прочность этих участков границ. По мере повышения концентрации атомов водород молизуется. Увеличение давления молизованного водорода в микрорасслоениях до критических значений, наряду с усугубляющим действием водорода, находящегося вблизи этих микрорасслоений - в областях трехосного напряженного состояния, приводит к активизации дислокационных процессов, микродеформациям и разрушению островков границ с хорошим сопряжением решеток смежных зерен. В дальнейшем описанные процессы повторяются, вызывая рост и объединение микротрещин. Наличие при сероводородном растрескивании вторичных трещин - водородных расслоений, расположенных перпендикулярно к магистральной трещине, т.е. параллельно действующим напряжениям, подтверждает то, что контролирующими процессами сероводородного растрескивания, как и водородного расслоения, являются: сорбция металлом ионов водорода и молизация водорода в микронесплошностях, находящихся на границах зерен и на границах раздела матрица - неметаллическое включение.
Другие рефераты на тему «Производство и технологии»:
- Затвердевание сплавов. Строение жидкого металла. Термодинамические стимулы и кинетические возможности процесса затвердевания. Влияние переохлаждения и примесей на процесс кристаллизации
- Качественный метод исследования с применением индикаторов. Весовой метод измерения скорости коррозии металлов
- Производство пленок и полиэтилена низкой плотности
- Котел пищеварочный электрический
- Зонная плавка германия и кремния
Поиск рефератов
Последние рефераты раздела
- Технологическая революция в современном мире и социальные последствия
- Поверочная установка. Проблемы при разработке и эксплуатации
- Пружинные стали
- Процесс создания IDEFO-модели
- Получение биметаллических заготовок центробежным способом
- Получение и исследование биоактивных композиций на основе полиэтилена высокой плотности и крахмала
- Получение титана из руды