Автоматическая система управления процессом испытаний электропривода лифтов
где
– это передаточная функция эталонного разомкнутого контура скорости, оптимизированного на симметричный оптимум, а – малая некомпенсируемая постоянная времени, определяющая быстродействие контура;
– это передаточная функция замкнутого контура управления составляющей вектора тока , в данном случае являющаяся подчинённым контуром для контура частоты вращения.
Тогда итоговое выражение для передаточной функции регулятора в контуре скорости получаем в следующем виде:
.
Выражение передаточной функции регулятора имеет «неудобный» вид для синтеза регулятора. Предлагается с учётом некоторых допущений, связанных с пренебрежением постоянными времени высших порядков выполнить ряд преобразований над числителем для его представления в более «удобном» виде.
.
С учётом (3.41), выражение (3.40) преобразуем к следующему виду:
.
Рисунок 25 – График расчёта переходных процессов в оптимизированном контуре управления частотой вращения ротора
В итоге синтеза оказался получен пропорционально-интегральный регулятор со следующими параметрами:
(о.е.)
– коэффициент усиления,
(о.е.)
– постоянная времени интегрирования регулятора скорости,
(о.е.)
– постоянная времени входного фильтра.
Контур управления положением
Согласно иерархии подчинённого регулирования для контура управления частотой вращения внешним является контур управления положением. При оптимизации контура управления положением предполагаем использование настройки на симметричный оптимум.
Рисунок 26 – Контур управления положением
Согласно методике настройки на симметричный оптимум, получаем необходимое выражение для передаточной функции регулятора
,
где
это передаточная функция эталонного разомкнутого контура положения, оптимизированного на симметричный оптимум, а – малая некомпенсируемая постоянная времени, определяющая быстродействие данного контура;
это передаточная функция замкнутого контура управления частотой вращения ротора , настроенного на симметричный оптимум с фильтром на входе и являющегося подчинённым относительно контура положения.
В стремлении понизить порядок передаточной функции объекта управления допустимо не учитывать постоянные времени высших порядков. Применительно к замкнутому контуру скорости это выглядит следующим образом:
.
C учётом допущения (3.51) получаем следующее выражение для передаточной функции регулятора в контуре положения:
.
Для величины малой некомпенсируемой постоянной времени в контуре положения принимаем значение
т.е., что позволяет упростить структуру управляющего регулятора.
Итоговое выражение для регулятора положения приобретает следующий вид:
.
По итогам синтеза оказался получен пропорционально-интегральный регулятор со следующими параметрами:
(о.е.)
– коэффициент усиления,
(о.е.)
– постоянная времени интегрирования регулятора скорости,
(о.е.)
– постоянная времени входного фильтра.
Рисунок 27 – График расчёта переходных процессов в оптимизированном контуре управления положением
3.3 Разработка алгоритмов работы регуляторов системы управления технологическим оборудованием
Для решения задачи формирования нагрузочного момента, имитирующего усилия, прикладываемые к ЭП лифта со стороны технологического оборудования, используем специально разработанный модуль для имитации нагрузочных моментов с программной реализацией. Здесь и далее в работе под определением данного модуля будем подразумевать имитационный формирователь моментов нагрузки (ИФМН).
В соответствии с требованиями к работе испытательного стенда, сигнал на выходе ИФМН должен полностью имитировать рабочие режимы различных типов лифтов. Кроме того, ИФМН должен однозначно определять работу системы в одном из двух режимов: формирование нагрузочного момента в движении и при упоре, что требует наличия переключающего модуля, отвечающего за организацию переходов между указанными режимами. В данном случае задача формулируется следующим образом: для имитации нагрузочных усилий необходимо сформировать нагрузочный момент Мнагр в функции углового перемещения выходного вала ЭП . В случае отключения или остановки испытуемого ЭП, ИФМН должен предотвратить возможное «опрокидывание» моментного ЭП и выдать команду на переход в следящий режим с нулевым заданием или выполнить останов ЭП.
3.4 Компьютерное моделирование алгоритмов управления. Графическое представление результатов моделирования
После проведения оптимизации отдельных контуров системы управления необходимо провести проверку показателей качества всей системы нагрузочного ЭП. Данный режим не принимает во внимание различные нелинейности, присущие системе любого ЭП и предполагает рассмотрение системы в линеаризованном виде. На рисунке 28 представлена структурная схема линеаризованного асинхронного ЭП с векторным управлением на основе имитационной модели АД во вращающейся системе координат с ориентацией по вектору потокосцепления ротора, т.е. в данном случае и система управления, и модель АД, как управляемый объект, находятся в одной и той же вращающейся системе координат.
Другие рефераты на тему «Производство и технологии»:
Поиск рефератов
Последние рефераты раздела
- Технологическая революция в современном мире и социальные последствия
- Поверочная установка. Проблемы при разработке и эксплуатации
- Пружинные стали
- Процесс создания IDEFO-модели
- Получение биметаллических заготовок центробежным способом
- Получение и исследование биоактивных композиций на основе полиэтилена высокой плотности и крахмала
- Получение титана из руды