Проектирование естественной акустики зала многоцелевого назначения
В конкретном примере:
a = 3м, b = 6,7 м, , R0 = 7,6м, R = 15м, l =1м.
Предварительно вычисляем два вспомогательных параметра:
,
Рисунок 2
Тогда ошибка в уровне силы звука, отраженного от потолочного элемента 1 и приходящего к слушателю М (в приближении волновыми свойствами звука) составит:
дБ.
∆L< 5 дБ , то метод геометрической акустики здесь оправдан.
III Проверка слушательских мест на критический интервал запаздывания ( на эхо)
Для залов многоцелевого назначения критическое время (интервал) запаздывания первых отражений по отношению к прямому звуку принимается равным мс ( для чисто музыкальных залов оно выше (50/80 мс).
При скорости звука в воздухе С=340 м/с это соответствует различию в длинах пробега прямого и отраженного звуков, приходящих к слушателю, порядка м.
Таким образом, проверка слушательных мест на возможность образования простого эха (на стадии проектирования зала) сводится к измерению (по плану и разрезу зала) различия в «длинах пробега» прямого звука от источника на авансцене и первых отражений от стен и потолка, приходящих к слушателю:
.
рисунок №3
м;
м;
м (м)
Сделаем проверку на критический интервал запаздывания потолочных отражений для слушателей не на осевой линии зала. В этом случае нужно делать вспомогательные построения на разрезе и плане зала.
На рисунке №4 показана схема расчета «длины запаздывания» звуковой волны, отраженной от 1-го потолочного элемента для слушателя С не на осевой линии зала.
Здесь, С – положение слушателя на плане зала, С* – его положение на разрезе зала; К и К1 – положение участка потолка (в разрезе и плане, соответственно), от которого поступает отражение к слушателю
м,
м,
м (м).
IV Расчет и корректировка времени реверберации
За стандартное время реверберации принимается время, в течение которого плотность звуковой энергии в помещении уменьшается в 106 раз (уровень силы звука и звукового давления ослабевают надБ).
Для многоцелевых залов оценку оптимального времени реверберации на частоте 500 Гц (средне-частотный диапазон речи и музыки) можно провести по формуле:
(с),
Для рассматриваемого зала объемом V= 3820 м3.
с, с.
Реальное время реверберации зала существенно зависит от его общего звукопоглощения. Поэтому для расчета времени реверберации на ряде опорных частот (125, 500 и 2000 Гц) необходимо предварительно вычислить общее звукопоглощение А в зале на этих частотах.
Для удобства, да это правильно и по существу, общее звукопоглощение в зале представляют суммой трех членов:
А = Апост. + Аперем. + Адобав.
К постоянному звукопоглощению относят поглощение звука всеми ограждающими поверхностями и его вычисляют по формуле:
,
где, – площади элементов ограждающих поверхностей (м2);
– коэффициенты звукопоглощения материала поверхности.
К переменному звукопоглощению относят поглощение звука слушателями на креслах и пустыми креслами (из расчета 70% заполнения зала)
,
где а1 и а2 – эквивалентное звукопоглощение на одного слушателя и на одно кресло, соответственно.
Добавочное звукопоглощение связано с поглощением звука небольшими отверстиями, щелями, нишами, гибкими элементами отделки, люстрами, аппаратурой и т.п. , которые всегда имеются в зале, что трудно учесть в первых 2-х слагаемых. Его вычисляют по формуле:
,
где – эмпирические коэффициенты добавочного звукопоглощения (на 3-х частотах), а ( Sогр- Sзрит) – общая площадь ограждений за вычетом площади пола, занятой слушателями.
Для вычисления постоянного звукопоглощения нужно определиться с конкретными материалами ограждающих поверхностей. Первоначально рекомендуют выбирать обычные строительные материалы (а не специальные звукопоглощающие материалы и конструкции). Их список приведен в приложении.
В качестве материалов ограждающих поверхностей выберем следующие:
Потолок (S1) – бетон с железением поверхности;
Стены (S2) – штукатурка по металлической сетке;
Проходы зрителей (свободный пол) (S3) – линолеум на твердой основе;
Проем сцены, оборудованной декорациями (S4);
Авансцена (S5) – паркет;
Оркестровая яма (S6) – деревянная обшивка, сосна толщиной 19 мм;
Портьеры плюшевые на дверях (S7 = 12м2).
Результаты расчета постоянного звукопоглощения (на 3-х частотах) представим в виде соответствующей таблицы.
Ограждающие поверхности S(м2) |
Постоянное звукопоглощение | |||||
125 Гц |
500 Гц |
2000 Гц | ||||
|
(м2) |
|
(м2) |
|
(м2) | |
1. Потолок, S1=450 |
0,01 |
4,5 |
0,01 |
4,5 |
0,02 |
9,0 |
2. Стены, S2=1045 |
0,04 |
41,8 |
0,06 |
62,7 |
0,04 |
41,8 |
3. Проходы, S3=170 |
0,02 |
3,4 |
0,03 |
5,2 |
0,04 |
6,8 |
4. Проем сцены S4=78,75 |
0,2 |
15,75 |
0,3 |
23,625 |
0,3 |
23,625 |
5. Авансцена S5=20 |
0,04 |
0,8 |
0,07 |
1,4 |
0,06 |
1,2 |
6. Орк. яма S6=20 |
0,1 |
2,0 |
0,1 |
2,0 |
0,08 |
1,6 |
7. Портьеры S7=12 |
0,15 |
1,8 |
0,55 |
6,6 |
0,7 |
8,4 |
|
|
|