Фундаменты мелкого заложения и свайные фундаменты
1. ПРОЕКТИРОВАНИЕ ФУНДАМЕНТА МЕЛКОГО ЗАЛОЖЕНИЯ
1.1 Обработать данные физико-механических характеристик грунтов и оценить грунтовые условия
В задаче на выполнение курсовой работы задаются такие нормативные физико-механические характеристики пластов грунтов площадки строительства: удельный вес грунта g (кН/м3), удельный вес ма
териала частиц грунта gs (кН/м3), влажность грунта на границе текучести и раскатывание WL и WP, естественная влажность W, удельное сцепление Cn (кПа), угол внутреннего трения jn (град).
Все расчеты основ должны выполняться с использованием расчетных значений характеристик грунта X, определенных за формулой
где XП – нормативное значение данной характеристики;
gg – коэффициент надежности грунта, что принимается: для удельного сцепления – C - gg = 1,5, для угла внутреннего трения j - gg = 1,1, если песчаные, и gg = 1,15, если грунты глинистые; для остатка характеристик грунта равняется 1.
Для определения расчетного сопротивления грунтов основания необходимо вычислить и те характеристики грунта каждого пласта, которых не хватает, провести анализ и оценку их несущей способности. Основными характеристиками при определении свойств прочности для песчаных и глинистых грунтов есть коэффициент пористости е, ступени влажности Sr1, а для глинистых грунтов – и показатель текучести IL. Коэффициент пористости
,
где - удельный вес материала частиц грунта, кН/м3;
- удельный вес сухого грунта (скелета грунта);
где - удельный вес грунта, кН/м3;
- весовая влажность в долях единицы,
,
где - удельный вес воды, равняется 10 кН/м3,
Показатель текучести
,
где - влажность на границе раскатывания; - влажность на границе текучести; - число пластичности.
Удельный вес песчаных грунтов, супесков, мулов, расположенных ниже горизонта грунтовой или поверхностной воды, определяется с учетом действия воды, которая взвешивает вес, а суглинков, глин – в соответствии с (1, п. 7.6).
1 пласт, песок мелкий.
1.Удельный вес грунта
1 группа предельных состояний 2 группа граничных состояний
γ=18,5кН/м3
γ1=18,5+0,3=18,8 кН/м3 γ1=18,5+0,1=18,6 кН/м3
γ2=18,5- 0,3=18,2 кН/м3 γ2=18,5 – 0,1=18,4 кН/м3
2.Угол внутреннего трения
φ=30º
φ1=30+2=32º φ1=30+1=31º
φ2=30-2=28º φ2=30-1=29º
3.Коэффициент пористости
4.Удельный вес грунта
5.Степень влажности
Анализируя полученные данные делаем вывод:
песок рыхлый, насыщенный водой песок сер. плотности, насыщенный водой
2 пласт, песок крупный
1.Удельный вес грунта
1 группа предельных состояний 2 группа граничных состояний
γ=20,3 кН/м3
γ1=20,3 +0,3=20,6кН/м3 γ1=20,3+0,1=20,4кН/м3
γ2=20,3-0,3=20кН/м3 γ2=20,3-0,12=20,2кН/м3
2.Угол внутреннего трения
φ=41º
φ1=41+2=43º φ1=41+1=42º
φ2=41-2=39º φ2=41-1=40º
3.Коэффициент пористости
4.Удельный вес грунта
5.Степень влажности
Анализируя полученные данные делаем вывод: т.к.S >0.8
Грунт насыщенный водой
1.2 Проверить прочность разреза по срезу фундамента
На промежуточную опору моста действуют постоянные погрузки от суммарного веса пролетных строений и проезжей части Р1, весы опоры РОП и ряд временных нагрузок (от передвижного состава подвижного транспорта Р2 , сил ударов передвижного состава Fy, сил торможения FT, давления льда Fл и прочее).
Нормативный вес пролетных строений и элементов проезжей части рекомендуется вычислять по данным типичных проектов или аналогов.
Нормативная временная вертикальная нагрузка от передвижного состава на автомобильных дорогах принимают в соответствии с нормами [1, п. 2.12-2.15]. В курсовой работе вертикальные погрузки задаются.
Нормативный вес опоры
где Vо , Vр– объем соответственно тела сопротивления и ригеля, м3;
– удельный вес бетона, кН/м3.
Нормативная горизонтальная поперечная нагрузка от ударов передвижного состава Fy [1, п. 2.9], независимо от числа полос движения по мосту, надо принимать 5,9К, где К – класс погрузки.
В курсовой работе горизонтальная нагрузка от торможения берем из задачи FT = 850 кН.
Нагрузка от давления льда на сопротивления моста при отсутствии исходных данных о ледовом положении надо определить по формуле:
где y - коэффициент формы сопротивления (исчисляется по [1, табл. 2 приложения 10]. Для опоры на полокружного контура y = 0,9; расчетное сопротивление льда Rчл = кп×Rч1.
Rч1 – граница прочности льда на дробление (с учетом местного сжатия) для первого района страны;
кп – климатический коэффициент для данного района страны; определяется по [1, табл. 1. приложения 10);
b – ширина опоры на равные действия льда, г;
t – толщина льда, г;
Равнодействующую ледовой погрузки FЛ необходимо прикладывать в точке, расположенной на 0,3t ниже расчетного уровня воды.