Исследование модели электролитического осаждения меди
Медь образует до 240 минералов, однако лишь около 40 имеют промышленное значение.
Различают сульфидные и окисленные руды меди. Промышленное значение имеют сульфидные руды, из которых наиболее широко используется медный колчедан (халькопирит) CuFeS2. В природе он встречается главным образом в смеси с железным колчеданом FeS2 и пустой породой, состоящей из оксидов Si, Al, Ca и др. Часто сульф
идные руды содержат примеси благородных металлов (Аи, Ag), цветных и редких металлов (Zn, Pb, Ni, Co, Mo и др.) и рассеянных элементов (Ge и др.).
Содержание меди в руде обычно составляет 1—5%, но благодаря легкой флотируемости халькопирита его можно обогащать, получая концентрат, содержащий 20% меди и более [1845]. Наиболее крупные запасы медных руд сосредоточены главным образом на Урале, в Казахстане, Средней Азии, Африке (Катанта, Замбия), Америке (Чили, США, Канада).
2.4 Получение
Медные руды характеризуются невысоким содержанием меди. Поэтому перед плавкой тонкоизмельчённую руду подвергают механическому обогащению; при этом ценные минералы отделяются от основной массы пустой породы; в результате получают ряд товарных концентратов (например, медный, цинковый, пиритный).
В мировой практике 80 % меди извлекают из концентратов пирометаллургическими методами, основанными на расплавлении всей массы материала. В процессе плавки, вследствие большего родства меди к сере, а компонентов пустой породы и железа к кислороду, медь концентрируется в сульфидном расплаве (штейне), а окислы образуют шлак. Штейн отделяют от шлака отстаиванием.
На большинстве современных заводов плавку ведут в отражательных или в электрических печах. В отражательных печах рабочее пространство вытянуто в горизонтальном направлении; площадь подачи 300 м2 и более (30 м; 10 м), необходимое для плавления тепло получают сжиганием углеродистого топлива (естественный газ, мазут, пылеуголь) в газовом пространстве над поверхностью ванны. В электрических печах тепло получают пропусканием через расплавленный шлак электрического тока (ток подводится к шлаку через погруженные в него графитовые электроды).
Однако и отражательная, и электрическая плавки, основанные на внешних источниках теплоты, - процессы несовершенные. Сульфиды, составляющие основную массу медных концентратов, обладают высокой теплотворной способностью. Поэтому всё больше внедряются методы плавки, в которых используется теплота сжигания сульфидов (окислитель - подогретый воздух, воздух, обогащенный кислородом, или технический кислород). Мелкие, предварительно высушенные сульфидные концентраты вдувают струей кислорода или воздуха в раскалённую до высокой температуры печь. Частицы горят во взвешенном состоянии (кислородно-взвешенная плавка). Можно окислять сульфиды и в жидком состоянии; эти процессы усиленно исследуются в СССР и за рубежом (Япония, Австралия, Канада) и становятся главным направлением в развитии пирометаллургии сульфидных медных руд.
Богатые кусковые сульфидные руды (2-3 % Cu) с высоким содержанием серы (35-42 % S) в ряде случаев непосредственно направляются на плавку в шахтных печах (печи с вертикально расположенным рабочим пространством). В одной из разновидностей шахтной плавки (медно-серная плавка) в шихту добавляют мелкий кокс, восстановляющий в верхних горизонтах печи SO2 до элементарной серы. Медь в этом процессе также концентрируется в штейне.
Получающийся при плавке жидкий штейн (в основном Cu2S, FeS) заливают в конвертер - цилиндрический резервуар из листовой стали, выложенный изнутри магнезитовым кирпичом, снабженный боковым рядом фурм для вдувания воздуха и устройством для поворачивания вокруг оси. Через слой штейна продувают сжатый воздух. Конвертирование штейнов протекает в две стадии. Сначала окисляется сульфид железа, и для связывания окислов железа в конвертер добавляют кварц; образуется конвертерный шлак. Затем окисляется сульфид меди с образованием металлической меди и SO2. Эту черновую медь разливают в формы. Слитки (а иногда непосредственно расплавленную черновую медь) с целью извлечения ценных спутников (Au, Ag, Se, Fe, Bi и других) и удаления вредных примесей направляют на огневое рафинирование. Оно основано на большем, чем у меди, сродстве металлов-примесей к кислороду: Fe, Zn, Co и частично Ni и другие в виде окислов переходят в шлак, а сера (в виде SO2) удаляется с газами. После удаления шлака медь для восстановления растворённой в ней Cu2O "дразнят", погружая в жидкий металл концы сырых берёзовых или сосновых брёвен, после чего отливают его в плоские формы. Для электролитического рафинирования эти слитки подвешивают в ванне с раствором CuSO4, подкислённым H2SO4. Они служат анодами. При пропускании тока аноды растворяются, а чистая медь отлагается на катодах - тонких медных листах, также получаемых электролизом в специальных матричных ваннах. Для выделения плотных гладких осадков в электролит вводят поверхностно-активные добавки (столярный клей, тиомочевину и другие). Полученную катодную медь промывают водой и переплавляют. Благородные металлы, Se, Te и другие ценные спутники меди концентрируются в анодном шламе, из которого их извлекают специальной переработкой.
Наряду с пирометаллургическими применяют также гидрометаллурги-ческие методы получения меди (преимущественно из бедных окисленных и самородных руд). Эти методы основаны на избирательном растворении медьсодержащих минералов, обычно в слабых растворах H2SO4 или аммиака. Из раствора меди, либо осаждают железом, либо выделяют электролизом с нерастворимыми анодами. Весьма перспективны применительно к смешанным рудам комбинированные гидрофлотационные методы, при которых кислородные соединения меди растворяются в сернокислых растворах, а сульфиды выделяются флотацией. Получают распространение и автоклавные гидрометаллургические процессы, идущие при повышенных температурах и давлении.
2.5 Физические свойства
Техническая медь — металл красного, в изломе розового цвета, при просвечивании в тонких слоях — зеленовато-голубой. Имеет гранецентрированную кубическую решетку с параметром а = 0,36074 нм, плотность 8,96 кг/м3 (20° С).
Основные физические свойства меди
Температура плавления, °С 1083
Температура кипения, °С 2600
Теплота плавления, кДж/г-ат. 0,7427
Теплота испарения, кДж/г-ат. 17,38
Удельная теплоемкость, Дж/(г.град) (20°С) 0,022
Теплопроводность, Дж/(м.град.с) (20°С) 2,25-10-3
Электрическое сопротивление, Ом.м (20°С) 1,68-Ю-4
Удельная магнитная восприимчивость, 0,086.10-6
абс. эл.-магн. ед./г (18 °С)
Медь — вязкий, мягкий и ковкий металл, уступающий только серебру высокой теплопроводностью и электропроводностью. Эти качества, а также пластичность и сопротивление коррозии обусловили широкое применение меди в промышленности.
2.6 Применение
Большая роль меди в технике обусловлена рядом её ценных свойств и, прежде всего высокой электропроводностью, пластичностью, теплопроводностью. Благодаря этим свойствам медь - это основной материал для проводов; свыше 50 % добываемой меди применяют в электротехнической промышленности. Все примеси понижают электропроводность меди, а потому в электротехнике используют металл высших сортов, содержащий не менее 99,9 % Cu. Высокие теплопроводность и сопротивление коррозии позволяют изготовлять из меди ответственные детали теплообменников, холодильников, вакуумных аппаратов и т. п. Около 30-40 % меди используют в виде различных сплавов, среди которых наибольшее значение имеют латуни (от 0 до 50 % Zn) и различные виды бронз; оловянистые, алюминиевые, свинцовистые, бериллиевые и т. д. (подробнее см. Сплавы меди). Кроме нужд тяжёлой промышленности, связи, транспорта, некоторое количество меди (главным образом в виде солей) потребляется для приготовления минеральных пигментов, борьбы с вредителями и болезнями растений, в качестве микроудобрений, катализаторов окислительных процессов, а также в кожевенной и меховой промышленности и при производстве искусственного шёлка.
Другие рефераты на тему «Физика и энергетика»:
- Электромагнитные переходные процессы
- Ветроэнергетика - сущность и перспективы
- К механизму электропроводности магнитной жидкости с графитовым наполнителем
- Последовательное соединение приемников электрической энергии и проверка второго закона Кирхгофа
- Классический метод расчета переходных процессов в линейных цепях
Поиск рефератов
Последние рефераты раздела
- Автоматизированные поверочные установки для расходомеров и счетчиков жидкостей
- Энергосберегающая технология применения уранина в котельных
- Проливная установка заводской метрологической лаборатории
- Источники радиации
- Исследование особенностей граничного трения ротационным вискозиметром
- Исследование вольт-фарадных характеристик многослойных структур на кремниевой подложке
- Емкость резкого p-n перехода