Философская и научная картина мира
В 30-е гг. XX в. было сделано другое важнейшее открытие, которое показало, что элементарные частицы вещества, например электроны, обладают не только корпускулярными, но и волновыми свойствами. Таким образом, было доказано экспериментально, что между веществом и полем не существует непроходимой границы: в определенных условиях элементарные частицы вещества обнаруживают волновые свойства, а квант
ы поля - свойства корпускул. Это явление получило название дуализма волны и частицы, которое никак не укладывалось в рамки обычного здравого смысла и классических научных представлений.
Квантовая механика была положена в основу бурно развивающейся физики элементарных частиц, «число» которых достигает ныне нескольких сотен, но обобщающая теория до настоящего времени не создана. Так или иначе, стало ясно, что микромир является многоуровневой системой, на каждом уровне которой существуют специфические виды взаимодействий и специфические свойства пространственно-временных отношений. Область доступных в эксперименте микроскопических интервалов условно делится на четыре уровня: уровень молекулярно-атомных явлений; уровень релятивистских квантово-электродинамических процессов; уровень элементарных частиц; уровень субэлементарных процессов.
В этой области иначе представляют и природу пустоты — вакуума, а именно как сложную систему виртуально рождающихся и поглощающихся фотонов и других квантов поля в состоянии с минимально возможной энергией. Квантовая электродинамика впервые наглядно показала, что пространство и время нельзя оторвать от материи, что так называемая «пустота» — это не что иное, как одно из состояний материи.
На субатомном уровне структурной организации материи определяющую роль играют сильные взаимодействия элементарных частиц. Специфике микромира не соответствуют обыденные представления о соотношении части и целого. Еще более радикальных изменений пространственно-временных представлений требует переход к исследованию процессов, характерных для слабых взаимодействий. На повестку дня встал вопрос о нарушении пространственной и временной четности, так как правое и левое пространственные направления оказываются неэквивалентными. Это потребовало принципиально нового истолкования пространства и.времени: одно связано с изменением представлений о прерывности и непрерывности пространства и времени, а второе - с гипотезой о возможной макроскопической природе пространства и времени.
Рассмотрим, хотя бы кратко, эти направления исследований.
Физика микромира имеет дело со сложным единством и взаимодействием прерывности и непрерывности. Это относится не только к структуре материи, но и к взаимосвязи пространства и времени. После создания теории относительности и квантовой механики ученые попытались объединить две фундаментальные теории. Первым достижением на этом пути явилось релятивистское волновое уравнение для электрона, указывающее на существование антипода электрона — частицы с положительным электрическим зарядом. С точки зрения современной теории каждой частице в природе соответствует античастица, это обусловлено фундаментальными свойствами пространства и времени (четность пространства, отражение времени и т.д.).
Пока единственная ветвь теории элементарных частиц, которая достигла высокого уровня развития и известной завершенности,— электродинамика, включающая в себя описание взаимодействий электронов, позитронов, мюонов и фотонов. Она является локальной теорией, так как в ней функционируют понятия, заимствованные из классической физики, основанные на концепции пространственно-временной непрерывности: точечность заряда, локальность поля, точечность взаимодействия и т.д. Использование этих понятий влечет за собой существенные трудности, связанные с бесконечными значениями некоторых величин (масса, собственная энергия электрона, энергия нулевых колебаний поля и т.д.). Эти трудности ученые преодолевают, вводя в теорию понятия о дискретности пространства и времени. На этом пути возможен выход из неопределенности бесконечности, так как включает в рассмотрение фундаментальную длину — основу атомистического пространства.
Широкое признание получило также направление, связанное с пересмотром концепции локальности. Отказ от представлений о точечном взаимодействии микрообъектов предпринимается двумя методами. Первый исходит из положения, что понятие локального взаимодействия лишено смысла. Второй основан на отрицании точечной координаты пространства — времени, что приводит к теории квантового пространства — времени. Дело в том, что протяженная элементарная частица обладает сложной динамической! структурой. Подобная структура микрообъектов ставит под сомнение их элементарность. Ученые столкнулись не только со сменой объекта, которому приписывается свойство элементарности, но и с необходимостью пересмотра диалектики элементарного и сложного в микромире. Здесь частицы неэлементарны в классическом смысле: они похожи на классические сложные системы, но не являются таковыми. В них сочетаются противоположные свойства элементарного и сложного.
Отказ от представлений о точечности взаимодействия частиц влечет за собой изменение наших представлений о пространстве — времени и причинности, тесно взаимосвязанными между собой. По мнению некоторых физиков, в микромире теряют смысл обычные временные отношения «раньше» и «позже». В области нелокального взаимодействия события связаны в один «комок», но не следуют одно за другим.
Таково положение дел, сложившееся в представлениях о пространстве - времени на микроуровне, где нарушение причинности выступает в качестве нового принципа. В свою очередь разграничение пространства — времени на области «малые», где причинность нарушена, и «большие», где она выполнена, невозможно без использования новой константы размерности — элементарной длины. С этим «атомом» пространства увязывается и элементарный момент времени (хронон), и именно в соответствующей им пространственно-временной области протекает сам процесс взаимодействия частиц. Теория дискретного пространства — времени продолжает развиваться. Открытым остается вопрос о внутренней структуре «атомов» пространства и роли (наличии) в них времени и пространства. Однако вопрос о пространстве и времени требует особого рассмотрения.
3. Пространство и время
Уже в античном мире мыслители задумывались над природой пространства и времени. Представители элейской школы отрицали существование пустого пространства или, по их выражению, «небытия». Другие, в том числе Демокрит, утверждали, что пустота существует, как материя и атомы, и необходима для их перемещений и соединений. В «Началах» древнегреческого математика Евклида пространственные характеристики объектов впервые обрели строгую математическую форму. В это же время зарождаются геометрические представления об однородном бесконечном пространстве.
Физическая картина мира, опирающаяся на точные математические расчеты, была представлена в трудах И. Ньютона (1643— 1727). Вершиной его творчества стала теория тяготения, установившая закон всемирного тяготения. Согласно этому закону сила тяготения универсальна и проявляется между любыми материальными телами. Она всегда пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними. Распространив на всю Вселенную закон тяготения, Ньютон представил возможную ее структуру. Он пришел к выводу, что Вселенная не является конечной. Она бесконечна. Лишь при этом предположении в ней может существовать множество космических объектов — центров гравитации. Раскрывая сущность времени и пространства, Ньютон характеризует их как «вместилища» всего существующего. Во времени все располагается в смысле порядка следования, в пространстве — в смысле порядка положения. Он предлагает различать два типа представлений о пространстве и времени: абсолютные (истинные, математические) и относительные (кажущиеся, обыденные), и дает им следующую характеристику: абсолютное, или истинное, математическое время само по себе и по всей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно и иначе называется длительностью. Относительное, или кажущееся, время есть изменчивая, постигаемая чувствами, внешняя мера продолжительности, употребляемая в обыденной жизни вместо истинного математического времени: час, день, месяц, год и т.п.