Помутнение как характеристическое свойство оксиэтилированных ПАВ и полимеров
Хорошо известно, что растворы НПАВ при нагревании в определенном температурном интервале начинают сильно рассеивать свет. Они становятся "мутными". Это явление обусловлено определенными особенностями фазовой диаграммы. Область изотропного раствора ограничена со стороны высоких температур нижней кривой растворимости, выше которой система испытывает фазовое разделение с образованием ф
азы, обогащенной НПАВ, и раствора, обедненного НПАВ. О начале расслоения можно судить по помутнению растворов. Минимум на кривой растворимости является критической точкой. Приближение к этой точке сопровождается сильным светорассеянием вследствие критических флуктуации.
Температура помутнения сильно зависит от длины полиоксиэтиленовой цепи и в меньшей степени от размера гидрофобного радикала. Обычно точка помутнения регистрируется для некоторой фиксированной концентрации НПАВ. Из приведенных выше фазовых диаграмм можно определить, что точка помутнения для C^Eg равна ~80°С, а для СЕб и С12Е4-5О и - 100C соответственно. НПАВ с еще более короткими оксиэтиленовыми цепями не растворяются в воде даже при температуре замерзания, так что точка помутнения находится ниже O0C На рис. представлена зависимость точек помутнения при определенной массовой концентрации от числа оксиэтиленовых единиц для НПАВ с С12.
Зависимость точки помутнения от длины оксиэтиленовой цепи для НПАВ с 12 атомами углерода в углеводородных радикалах
Фазовые диаграммы систем поли - вода для ПЭГ разной молекулярной массы. Снизу вверх молекулярные массы ПЭГ равны IO6, 2 104, 1.4 · 104, 8 103,2270,2250 и 2160.
Явление помутнения наблюдается для многих систем и является общим свойством для широкого круга растворов, в которых растворенное вещество содержит оксиэтиленовые группы. Для поли или поли двухфазная область имеет простую замкнутую форму. Двухфазная область существенно расширяется во всех направлениях при увеличении молекулярной массы полимера. Основные особенности таких фазовых диаграмм характерны и для НПАВ. Однако системы с НПАВ более сложные из-за самоассоциации, приводящей к возникновению дополнительных фаз. Более того, точка помутнения сильно зависит от размера мицелл, который значительно варьируется для различных НПАВ. Большие числа агрегации, как и высокие степени полимеризации у полимеров, дают низкую точку помутнения и критическую точку при низкой концентрации.
На помутнение сильно влияет присутствие других растворенных веществ. Как видно, электролиты могут как повышать, так и понижать точку помутнения и соответственно могут называться всаливающими и высаливающими. Это объясняется особенностями взаимодействия полимера или НПАВ с растворенным веществом. Эффект более выражен для анионов. Некоторые анионы, например SCN-, проявляют преимущественное сродство к полимеру или поверхностно-активному веществу, а не к растворителю, вследствие чего накапливаются вблизи оксиэтиленовых групп. Другие, например СГ, не обладают такой склонностью, и их содержание вблизи оксиэтиленовых групп понижено. В первом случае растворимость НПАВ увеличивается и, как следствие, повышается точка помутнения, в то время как во втором - все происходит наоборот.
Очень небольшие добавки анионных ПАВ сильно увеличивают растворимость НПАВ и точку помутнения вследствие образования смешанных мицелл либо вследствие ассоциации ПАВ с полимером, если для последнего характерно явление помутнения. В результате таких взаимодействий образуются заряженные агрегаты, концентрирование которых в одной из фаз затруднено из-за невыгодности электростатических взаимодействий, обусловленной энтропией распределения противоионов.
Влияние добавок солей и мочевины на точку помутнения 5 мМ раствора С12Е7
Сходство физико-химических свойств блок-сополимеров с полиоксиэтиленовыми сегментами и поверхностно-активных веществ с оксиэтиленовыми полярными группами.
Сходство свойств НПАВ и поли демонстрируют статистические и блок-сополимеры, содержащие оксиэтиленовые группы и припиленоксида.
Статистические сополимеры, содержащие в дополнение к оксиэтиленовым группам еще и такие менее полярные группы, как оксипропиленовые, по своему поведению похожи на поли, но характеризуются более низкой растворимостью и более низкими точками помутнения.
Известно множество полиоксиэтиленовых блок-сополимеров, нашедших широкое применение: от поли с алкильной цепью на конце до сложных структур "звездообразной" геометрии. Системы с тремя типами блоков, PPO или поли, РВО), вызывают особый интерес. Их свойства во многом совпадают со свойствами НПАВ, поскольку для них также характерна самоорганизация. Но вследствие более высокой молекулярной массы все температурно-зависимые эффекты становятся более ярко выраженными. Можно привести один хорошо известный пример перехода низковязкого раствора полимера РЕО-РРО-РЕО в вязкий прозрачный "гель" при умеренном повышении температуры. В этом случае на самом деле возникает жидкокристаллическая кубическая фаза.
Типичная фазовая диаграмма двухкомпонентной системы, содержащей такой триблок-сополимер, на ней мы видим те же типы фаз и ту же последовательность их образования, что и для систем с окси-этилированными поверхностно-активными веществами. Разница состоит лишь в том, что для блок-сополимеров часто наблюдается большее число жидкокристаллических фаз. Контролировать образование той или иной фазы можно, меняя соотношение более полярных оксиэтиленовых групп и менее полярных оксипропиленовых групп, причем при высоком содержании оксиэтиленовых групп образуются фазы, расположенные в левой части схемы Фонтелля и, наоборот, при высоком содержании оксипропиленовых групп доминируют фазы из правой части схемы. В противоположность типичным поверхностно-активным веществам такие блок-сополимеры могут формировать структуры со множеством различных значений спонтанной кривизны и чисел ПАВ. Это еще ярче выражено для тройных систем, включающих масляный компонент.
Водные растворы блоксополимеров ЭО-ПО становятся очень вязкими в узком температурном интервале. Представлены зависимости модуля запаса G' от температуры для двух систем, различающихся концентрацией сополимера.
Фазовая диаграмма системы триблок-сополимер ЭО-ПО-ЭО - вода. Обозначения: mic и rev mic относятся к фазам изотропных растворов; cub, hex и Iam обозначают кубическую, гексагональную и ламелярную жидкокристаллические фазы соответственно.
Величину ККМ, характеризующую начало самоассоциации, можно определять не менее надежно, чем для простых ПАВ. Блок-сополимеры обнаруживают резкое снижение KKM с ростом температуры. Помутнение также присуще блок-сополимерам и, как следовало ожидать, точка помутнения повышается пропорционально содержанию оксиэтиленовых групп и снижается с увеличением молекулярной массы блок-сополимера.