Основные химические законы и их использование в химической промышленности
Другой из важнейших количественных признаков элементов представляет состав частиц высших соединений, им образуемых. Здесь более простоты и ясности, потому что Дальтонов закон кратных отношений (или простоты и цельности числа атомов, входящих в состав частиц) уже заставляет ждать только немногих чисел и разобраться в них было легче. Обобщение выразилось в учении об атомности элементов или их вал
ентности. Водород есть элемент одноатомный, ибо дает по одному соединению HX с другими одноатомными же элементами, представителем которых считался хлор, образуя НСl. Кислород двуатомен, потому что дает H2O или соединяется вообще с двумя X, если под Х подразумевать одноатомные элементы. Так получают НСlO, Сl2О и т.д. В этом смысле азот считается трехатомным, так как дает NH3, NCl3; углерод четырехатомным, потому что образует СН4, СО2и т.д. Сходные элементы одной группы, напр. галоиды, дают и сходные частицы соединений, т.е. имеют одну и ту же атомность. Через все это изучение элементов очень сильно двинулось вперед. Но было немало трудностей разного рода. Особую трудность представили соединения кислорода, как элемента двуатомного, способного замещать и удерживать X2, в силу чего совершенно понятно образование Cl2O, HClO и т.п. соединений с одноатомными элементами. Однако, тот же кислород дает не только НСlO, но и HClO2, НСlO3и НСlO4(хлорная кислота), точно также как не только H2O, но и H2O2(перекись водорода). Для объяснения пришлось признать, что кислород, в силу своей двуатомности, обладая двумя сродствами (как говорят), способен втиснуться в каждую частицу и встать между всякими двумя атомами, в нее входящими. Трудностей при этом получилось много, но остановимся на двух, по-моему, важнейших. Во-первых, оказалась как бы грань О4для числа кислородных атомов, входящих в частицу, а этой грани нельзя ждать на основании допущенного. При том, приближаясь к грани, получались часто соединения не менее, а более прочные, чего уже вовсе нельзя допустить при представлении о втиснутых атомах кислорода, так как чем более их взойдет, тем вероятнее было иметь непрочность связей. А между тем НСlO4прочнее НСlO3, эта последняя прочнее НСlO2и НСlO, тогда как НСl опять тело химически очень прочное. Грань же О4выступает в том, что водородным соединениям разной атомности:
НСl, H2S, Н3Р и H4Si
отвечают высшие кислородные кислоты:
НСlO4, H2SO4, Н3РО4и H4SiO4,
в которых одинаково содержатся четыре атома кислорода. Из этого даже выходит тот неожиданный вывод, что считая Н – одно-, а О – двуатомными элементами, по кислороду способность к соединению выходит обратная, чем по водороду, т.е. по мере того как у элементов увеличивается свойство удерживать атомы водорода или возрастать в атомности, уменьшается способность удерживать кислород; хлор, так сказать, одноатомен по водороду и семиатомен по кислороду, а фосфор или аналогический с ним азот трехатомен в первом смысле, а во втором – пятиатомен, что видно и по другим соединениям, например NH4CI, POCl3, РСl5и т.п. Во-вторых, все, что знаем, явно указывает на глубочайшее различие в присоединении кислорода (втискивании его, судя по представлению об атомности элементов) в том случае, когда образуется перекись водорода, от того, когда происходит напр. из H2SO4(сернистая кисл.) серная кислота H2SO4, хотя H2O2отличается от Н2O точно также атомом кислорода, как H2SO4от H2SO3, и хотя раскислители в обоих случаях переводят высшую степень окисления в низшую. Разность в отношении к реакциям, свойственным H2O2и H2SO4, особенно выступает по той причине, что серной кислоте отвечает своя перекись (надсерная кислота, аналог которой надхромовая недавно изучена Wiede и содержит, по его данным, H2CrO5), обладающая совокупностью свойств перекиси водорода. Значит, есть существенная разность в способе присоединения кислорода в «солеобразных» окислах и настоящих перекисях и, значит, простым втискиванием атомов кислорода между другими выражать все случаи присоединения кислорода недостаточно, а если выражать, то скорее всего это следует применять к перекисям, а не к образованию, так сказать, нормальных соединений кислорода, приближающихся к RHnО4, где n, число атомов водорода, не бывает более 4, как и число атомов кислорода в кислотах, содержащих один атом элементов R. Приняв сказанное во внимание и означая вообще через R атом элементов, вся совокупность сведений о солеобразных окислах приводится к тому выводу, что число самостоятельных форм или видов окислов очень не велико и ограничивается следующими восемью:
R2O, напр. K2O, Ag2O.
R2O2или RO, напр. CaO, FeO.
R2O3, напр. Al2O3, N2O3.
R2O4или RO2, напр. CO2, SiO2.
R2O5, напр. N2O5, P2O5.
R2O6или RO3, напр. SO3, CrO3.
R2O7, напр. Cl2O7, Mn2O7.
R2O8или RO4, напр. OsO4, RuO4.
Эта стройность и простота форм окисления вовсе не вытекает из учения об атомности элементов в его обычной форме (при определении атомности по соединению с Н или Сl) и есть дело прямого сличения кислородных соединений самих по себе. Вообще учение о постоянной и неизменной атомности элементов заключает в себе трудности и несовершенства (не насыщенные соединения, подобные СО, пересыщенные, подобные JCl3, соед. с кристаллизационною водою и т.п.), но оно в двух отношениях имеет и поныне важное значение, а именно с ним достигнута простота и стройность выражения состава и строения сложных органических соединений, и в отношении к выражению аналогии сродственных элементов, так как атомность, по чему бы ее не считали (или состав частиц сходственных соединений), в таком случае оказывается одинаковою. Так напр. сходные между собою во многом ином галоиды или же металлы данной группы (щелочные, напр.) оказываются всегда обладающими одинаковою атомностью и образующими целые ряды сходных соединений, так что существование этого признака есть уже до некоторой степени указатель аналогии.
Чтобы не усложнять изложения, мы оставим перечисление других качественных и количественных свойств элементов (напр. изоморфизма, теплот соед., показ, преломления и т.п.) и прямо обратимся к изложению П. закона, для чего остановимся: 1) на сущности закона, 2) на его истории и приложении к изучению химии, 3) на его оправдании при помощи вновь открытых элементов, 4) на приложении его к определению величины атомных весов и 5) на некоторой неполноте существующих сведений.
Сущность П. законности. Так как из всех свойств химических элементов атомный их вес наиболее доступен для численной точности определения и для полной убедительности, то исходом для нахождения законности химических элементов всего естественнее положить веса атомов, тем более, что в весе (по закону сохранения масс) мы имеем дело с неуничтожаемым и важнейшим свойством всякой материи. Закон есть всегда соответствие переменных, как в алгебре функциональная их зависимость. Следовательно, имея для элементов атомный вес как одну переменную, для отыскания закона элементов следует брать иные свойства элементов, как другую переменную величину, и искать функциональной зависимости. Взяв многие свойства элементов, напр. их кислотность и основность, их способность соединяться с водородом или кислородом, их атомность или состав их соответственных соединений, теплоту, выделяемую при образовании соответственных, напр. хлористых соединений, даже их физические свойства в виде простых или сложных тел сходного состава и т.п., можно подметить периодическую последовательность в зависимости от величины атомного веса. Для того, чтобы это выяснить, приведем сперва простой список всех, хорошо ныне известных определений атомного веса элементов, руководясь недавним сводом, сделанным F.W. Clarke («Smithsonian Miscellaneous Collections», 1075: «A recalculation of the atomic weights», Вашингтон, 1897, стр. 34), так как его ныне должно считать наиболее достоверным и содержащим все лучшие и новейшие определения. При этом примем, вместе с большинством химиков, условно атомный вес кислорода равным 16. Подробное исследование «вероятных» погрешностей показывает, что примерно для половины приведенных результатов погрешность чисел менее 0,1%, но для остальных она доходит до нескольких десятых, а для иных, быть может, и до процентов. Все атомные веса приведены по порядку их величины.