Кооперативные межмакромолекулярные реакции с участием лигносульфонатов
Сравнительно небольшие отклонения от рассчитанной стехиометрии [ПА]:[ЛС-Na] = 1, предполагающей доступность всех сульфогрупп ЛС-Na в реакции с аминогруппами ПА, позволяют утверждать, что ионогенные группы в макромолекулах ЛС-Na расположены главным образом на периферии. Если, следуя лит. данным [12], рассматривать макромолекулу ЛС-Na как ограниченно набухающую сферическую частицу, заряд которой
равномерно распределен по объему, то следует ожидать более существенного отклонения характеристических составов полиэлектролитных комплексов от эквимольных, особенно для высокомолекулярных фракций ЛС-Na. Слабая зависимость этого отклонения от величины молекулярной массы ЛС-Na в области больших значений последней также не может быть объяснена в рамках сферической модели. Полученные нами данные значительно в лучшей степени соответствуют представлению о дискообразной форме макромолекул лигносульфонатов, выдвинутому недавно в работе [13].
Количественное описание реакции ПА—ЛС-Na проводили в терминах зависимости глубины превращения Э в межмакромолекулярной реакции от рН среды, рассчитанной из данных потенциометрического титрования. Как и в случае реакции между линейными синтетическими полиэлектролитами, глубину превращения оценивали по уравнению
где с„ — концентрация звеньев, вступивших в реакцию; с0 — начальная концентрация любого из макромолекулярных компонентов; [ОН-]—концентрация гидроксилионов в растворе; Кх — характеристическая константа диссоциации ПА: Kw — ионное произведение воды.
На рис. 3 представлены зависимости 6 от рН в реакциях ПА с различными образцами ЛС-Na, взятыми в соотношении [ПА]: [ЛС-Na] =1. Видно, что для высоко- и среднемолекулярных фракций ЛС-Na (кривые 1—4) крутизна кривых Э (рН) вплоть до 8~0,3 практически неизменна. Небольшое расхождение в крутизне при больших глубинах превращения связано с различиями в отклонении характеристического состава полиэлектролитных комплексов, образованных различными фракциями JIC-Na от эквимольного. Существенно, что реакции ПА — JIC-Na для всех изученных лигносульфонатов протекают в узком интервале рН. Это указывает на-кооперативный характер взаимодействия полиэлектролитов, макромолекулы которых являются химически комплементарными по отношению друг к другу.
Следует отметить также, что в рассматриваемом интервале молекулярных масс JIC-Na наблюдается некоторая зависимость растворимости поликомплексов ПА — JIC-Na в щелочных средах от величины молекулярной массы JIC-Na. Ниже приводятся значения 8 для различных фракций JIC-Na, выше которых происходит фазовое разделение в смесях полиэлектролитов, т. е. результирующий полиэлектролитный комплекс становится нерастворимым.
Рис. 3 Рис. 4
Рис. 3. Зависимость 6 от рН для реакций ПА с фракциями JIC-Na I (1), II (2), III (3), IV (4), V (5). V с учетом состава ПЭК (5'), JIC-Na нефракционированный (6). [JIC-Na] = [ПА] =0,0012 осново-моль/л
Рис. 4. Кривые потенциометрического титрования эквимольных смесей ПА с фракциями ЛС-Na I (1),. I+V (50:50 мол.%) (2), V (3). [ПА] =0,0012 осново-моль/лг [НС1]=0,01 моль/л
Согласно этим данным, для трех первых фракций с уменьшением молекулярной массы JIC-Na возрастает способность частиц полиэлектролитного комплекса ПА — JIC-Na удерживаться в растворе. Такая закономерность, по-видимому, отражает улучшение растворимости за счет уменьшения молекулярных масс самих частиц поликомплекса по мере уменьшения молекулярной массы полианиона. Если бы этот фактор был единственным, то для фракции IV можно было ожидать еще более широкого интервала значений 0, в котором имеет место образование водорастворимых полиэлектролитных комплексов. Однако появление опалесценции в такой смеси наблюдается уже при 9~0,2. Ухудшение растворимости, вероятно, вызвано присутствием в этой фракции низкомолекулярных JIC-Na. О наличии низкомолекулярных JIC-Na в этой фракции свидетельствуют данные аналитической гель-хроматографии, указывающие на ее широкое ММР.
Практически полная нерастворимость частиц полиэлектролитного комплекса, образованного фракцией V, очевидно, связана с особенностями химического строения низкомолекулярных лигносульфонатов. В работе [14] установлено, что форма макромолекул лигносульфонатов с Ж<1104 отлична от рассмотренной ранее и приближается к стержнеобразной. В низкомолекулярных лигносульфонатах практически все сульфогруппы принимают участие в межмакромолекулярной реакции (рис. 1, кривая 6), т. е. их свойства приближаются к свойствам линейных полиэлектролитов. Благодаря высокому значению их эквивалентной массы (~600) такие ЛС-Na ведут себя в реакции с противоположно заряженными полиэлектролитами аналогично синтетическим олигомерам [15]. Короткая цепочка JIC-Na в отличие от высокомолекулярных, рассмотренных выше, при взаимодействии с длинной цепочкой полимерного основания присоединяется к последней сразу значительной частью всех звеньев. Продукты незавершенных реакций того и другого типа (6<1) схематически изображены ниже.
(а — ЛС-Na высокомолекулярный, б — ЛС-Na низкомолекулярный). Случай б предполагает значительно большую гидрофобизацию частиц поликомплекса по мере присоединения к ней олигомерных молекул ЛС-Na. Соответствующие поликомплексы выделяются из растворов в виде мелкодисперсных осадков уже при малых значениях Э.
Рассмотренная ситуация предполагает, что при не слишком высоких Э значительная доля олигомерных молекул ЛС-Na, введенных в реакцию, остается свободной, и состав полимерного комплекса непрерывно изменяется с ростом глубины превращения. Для таких систем естественно определять 8 учитывая это изменение состава полиэлектролитного комплекса и относить эту величину только к тем реагирующим цепям ЛС-Na, которые включены в частицу поликомплекса.
Из рис. 3 (кривая 5) видно, что кривая 0 (рН), рассчитанная с учетом действительного состава поликомплекса и изменения его при уменьшении рН, значительно круче (и смещена в область более глубоких значений 0), чем соответствующая кривая (кривая 5), рассчитанная по уравнению (1), не учитывающему изменения состава полиэлектролитного комплекса и предполагающему, что он имеет эквимольный состав во всей области изменения 8.
Малые начальные 8 и сравнительно низкие значения рН смесей в случае реакции ПА с исходным нефракционированный ЛС-Na, очевидно, также обусловлены присутствием в образце значительного количества низкомолекулярных ЛС-Na. Для подтверждения правильности этого предположения была изучена модельная смесь, которая состояла из ЛС-Na наиболее высоко- и наиболее низкомолекулярной фракций, взятых в равных эквивалентных количествах. Поведение этой смеси сравнивали с поведением каждой из фракций ЛС-Na.
На рис. 4 изображены кривые потенциометрического титрования смесей ПА с отдельными фракциями I и V, а также модельной смеси. Как и следовало ожидать, присутствие низкомолекулярных ЛС-Na приводит к смещению кривой титрования модельной смеси в область меньших значений рН по сравнению с кривой титрования исходной смеси ПА —I. Такое смещение можно вызвать введением в реакционные смеси низкомолекулярных электролитов — солей. Ионы, образующиеся при диссоциации солей, экранируют электростатическое взаимодействие противоположно заряженных цепей друг с другом, что приводит к смещению равновесия межмакромолекулярной реакции в сторону разрушения полимерного комплекса [15]. В данном случае роль такого электролита играет низкомолекулярная фракция V, короткие отрицательно заряженные цепочки которой не способны при рН<8,5 связываться с ПА, как это видно из сравнения кривых 5 и 6 рис. 3 (кривая 6 построена без учета реального состава образующихся полиэлектролитных комплексов). Поведение в изученных реакциях нефракционированных образцов ЛС-Na и смесей фракций свидетельствует об избирательности реакций по отношению к высокомолекулярным ЛС-Na.