Инжекционные процессы в электрохимических системах с твердым катионпроводящим электролитом
Токи обмена по иону М+ определяли методом импедансометрии. Измерения импеданса электрохимической ячейки Рг осуществляли в диапазоне частот переменного тока 0,005-500 кГц с помощью импедансметра ВМ-507. Для определения объемного сопротивления твердого электролита и расчета адсорбционных. Для изучения процессов ионной инжекцйи на поверхность и в объем полупроводниковых фаз в рамках кластерного пр
иближения проводили квантово-химическое моделирование методом MNDO-PM3 и с использованием теории функционала плотности B3LYP. В расчетах применяли приближение Хартри-Фока-Рутана с базисом LanL2DZ(d, р) и псевдопотенциалом.
В третьей главе рассмотрены результаты экспериментального изучения процессов ионной эмиссии из твердых электролитов. Измерены токи эмиссии и проведена оценка работы выхода ионов щелочных металлов из твердых электролитов типа полиалюмината и комплексных силикатов натрия при нагревании.
Впервые измерены токи эмиссии из твердых электролитов Ш и Nu и контактная разность потенциалов между натрием и твердыми электролитами типа Na5Si, где M=Y, Ей, Gd, Yb в интервале температур от 230 до 400°С. Показано, что работа выхода иона Na+ из твердого электролита меньше, чем из чистого металла. Плотности удельных токов насыщения Is составили для Na4 0,63 мкА/см2 (400°С, потенциал ускоряющего напряжения 1000 В) и для Na2O.10Al2O3 - 0,04 мкА/см2 (355°С, ускоряющее напряжение 900 В). С ростом температуры токи насыщения возрастают (рис. 1).
В четвертой главе представлены условия твердофазного и электрохимического синтеза интеркалатов на основе дисульфида титана.
Интеркалатные соединения дисульфида титана с серебром получали методом твердофазного синтеза по реакции: xAg + TiS2 = AgxTiS2 при 820°С. Рентгенографически выделено три фазы, различающиеся величиной стехиометрического коэффициента х.
Электрохимический синтез осуществляли путем инжекцйи меди и серебра в кристаллическую решетку сульфида титана в ячейках типа Ti/M, М+-ТЭЛ/М+-ТЭЛ/МХГП82, M+-T3JI/Ti (M=Cu, Ag). (I)
При циклировании ячейки для инжекцйи серебра наблюдается гистерезис между первым инжекционным процессом и последующими (рис.2). Количество электричества, потребляемое в первом полуцикле, существенно больше и отвечает 0,41 атомов Ag на 1 моль TiS2 , тогда как во всех последующих циклах процесс идет в интервале 0,08 < х < 0,41.
Для получения интеркалатов меди использовали два режима электрохимической инжекцйи: динамический и квазистатический (ступенчатый). Как видно из рис.3, разница между квазистатическими и динамическими кривыми Е-х относительно невелика, что свидетельствует о достаточно высокой скорости образования соединений CuxTiS2 во всем интервале составов. Характерно наличие «плато» на Е-х кривой в интервале 0,30 < х < 0,55, которое указывает на сосуществование в этом интервале составов двух» фаз: фазы I состава Cu0,3TiS2 и фазы II состава Cuo,55TiS2. Фаза II может существовать в интервале составов 0,55 < х < 0,7. При х=0,7 достигается предельное содержание меди в интеркалате. При этом составе равновесный потенциал ячейки (I) становится равным нулю.
Ионный обмен между интеркалатным соединением AgxTiS2 и ТЭЛ исследовали методом импеданса с использованием симметричной ячейки AgxTiS2/ RbAgJs/ AgxTiS2 при х=0,2 и 0,4. Поведение электродной границы описывается моделью адсорбционной релаксации двойного слоя и соответствует эквивалентной схеме обратимого по ионам Ag электрода.
В главе 5 представлены результаты квантово-химического моделирования процесса переноса однозарядных катионов (НГ, Li+, Na+) по поверхности рутилоподобных оксидов состава Ме02 (Me = Si, Ge, Sn, Pb) с полупроводниковыми свойствами. Произведен выбор кластера, адекватно описывающего поверхностные и объемные свойства оксида. Показано, что для корректного описания поведения оксида необходим кластер, состав которого превышает (Ме02)9. Поскольку основная часть расчетов производилась полуэмпирическими методами, произведено сравнение результатов на неэмпирическом и полуэмпирическом уровнях. Рассчитана ширина запрещенной зоны рассматриваемых кластеров, обнаружено хорошее совпадение между расчетными и экспериментальными данными.
Рассмотрены процессы переноса однозарядных катионов по поверхности оксидов. Показано, что на поверхности оксидов существуют поверхностные каналы миграции. Рассчитаны геометрические и энергетические параметры путей миграции катионов (рис.5). Показано, что барьеры на пути миграции катионов определяются размерами катионов, монотонно убывая по мере возрастания их радиуса, Влияние химической природы оксида, по поверхности которого протекает миграция, на процессы ионного переноса двояко. Во-первых, оно определяется размером элементарной ячейки оксида. При этом в малоразмерных оксидах затруднен транспорт катионов большого размера, а при больших расстояниях между атомами поверхности затруднен перенос катионов малого размера. Во-вторых, сильное влияние на ионную подвижность оказывает эффективный заряд иона кислорода. Чем выше этот заряд, тем больше барьеры на пути миграции катионов.
Установлено, что в отсутствие контакта полупроводникового оксида с твердым электролитом основным источником протонов на поверхности становится диссоциативная хемосорбция воды. При этом гидроксогруппы фиксируются на катионах металла кристаллической решетки, а освободившиеся протоны приобретают возможность свободного перемещения по каналам поверхности, аналогичным рассмотренным выше. Увеличение концентрации протонов на поверхности затрудняет поверхностную миграцию и создает предпосылки для перехода поверхностного протонного переноса в объемный. Барьеры на пути объемной миграции протонов ниже, чем при миграции по поверхности, однако, на пути перехода протонов с поверхности в объем находятся энергетические барьеры значительной величины.
Изучено влияние допирования оксида олова иновалентными добавками на процессы транспорта. Показано, что в присутствии сурьмы в позициях олова протонный транспорт как по поверхности, так и в объеме диоксида олова облегчается.
В главе 6 представлены результаты экспериментального изучения переноса протонов по поверхности и в объеме полупроводниковых оксидов в контакте с источниками протонов. Экспериментально обнаружено, что в присутствии адсорбированной воды на поверхности диоксида олова (степень заполнения поверхности не превышает 1%), проводимость диоксида олова резко повышается. Анализ годографов импеданса позволил выделить два типа процессов протонного переноса в полиметаллическом диоксиде олова - поверхностный и объемный (рис.6). По мере возрастания количества адсорбированной влаги, как и предсказывали результаты моделирования, возрастает доля объемного переноса протонов по сравнению с поверхностным. Показано, что при возникновении ионного переноса резко возрастает и электронная проводимость диоксида олова. Соотношение ионной и электронной составляющих проводимости определяется степенью заполнения поверхности водой, удельной поверхностью оксидной фазы и температурой изучаемой системы (рис.7). При оптимальных условиях ионная проводимость достигает 97-98% от общей проводимости системы, т.е. полупроводник превращается в практически чисто ионный проводник. Высокая протонная проводимость диоксида олова реализуется и в распределенных структурах CsHS04-Sn02 выше температуры перехода гидросульфата цезия в суперионное состояние (140°С). В отличие от ранее изученных распределенных систем гидросульфата цезия с оксидами кремния, алюминия и титана, нами не наблюдалось как зависимости температуры перехода системы в ионпроводящее состояние от состава распределенной системы, так и сколь либо значительного изменения общего сопротивления системы при температурах ниже температуры фазового перехода.