Инжекционные процессы в электрохимических системах с твердым катионпроводящим электролитом
В интервале 140-200°С обнаружено, что суммарная проводимость распределенных структур выше проводимости отдельных фаз. Зависимость ионной и электронной составляющей проводимости от состава распределенной структуры имеет немонотонный характер. Максимумы на концентрационных зависимостях общей проводимости и ее протонной и электронной составляющих (рис. 8) наблюдаются в случае образования связной м
атрицы по CsHSC>4 (50% об. SnCb). Они соответствуют наибольшей величине поверхности раздела отдельных фаз, При исследовании обратимости границ РЬ02/Н+-ТЭЛ (ТЭЛ -фосфорновольфрамовая кислота и ее соли) было обнаружено, что токи обмена достигают значения 1*10»4 А/см2. Потенциал границы РЬОг/ТНГ-ТЭЛ относительно водородного электрода составляет 1,47 В, что соответствует процессу РЬ02+4Н++2е»-М>Ь2++2Н20. На основании данных о высоких токах обмена сделаны выводы о наличии процессов интеркаляции полупроводниковых рутилоподобных оксидов протонами. При этом источником протонов могут служить как протоны из твердого электролита, так и протоны, образовавшиеся при Диссоциативной хемосорбции воды. Полученные экспериментальные данные хорошо согласуются с результатами теоретического моделирования.
В главе 7 описаны результаты экспериментального исследования обмена ионами Na+ между твердыми электролитами и оксидными электродами. Методом импеданса показано, что в эквивалентной схеме ячейки имеются две параллельные цепочки, одна из которых соответствует переносу ионов натрия в объеме зерна и через контакт соседних зерен, а вторая - переносу Na+ по гидратированным границам зерен. Обратимость электродной реакции определяется переносом заряда по гидратированным границам.
Обнаружено, что в случае ТЭЛ, межзеренные границы которых не способны к гидратации, граница ТЭЛ/8п02 является, блокированной. В случае ТЭЛ, границы которых способны к гидратации, обратимость границы электрод/электролит по основным носителям заряда возрастает по мере возрастания влажности окружающей среды.
В восьмой главе обсуждаются результаты исследования процессов инжекции ионов из твердого электролита в электродный материал в присутствии электрохимически активных газов.
Исследовано поведение границ Ме02 / Н+-ТЭЛ на воздухе в присутствии водорода и монооксида углерода. Показано, что потенциал границы РЬО/ГЭЛ практически не зависит от состава твердого электролита и окружающей среды. Граница БпОг/КГ-ТЭЛ малочувствительна к изменению концентрации Н2 и СО в воздухе. Это связано с отсутствием хемосорбции этих газов. Как показывают эксперименты по адсорбции, введение в состав Sn02 платины практически не влияет на адсорбцию Н2, но резко увеличивает количество хемосорбированного СО и катализирует процесс окисления СО на поверхности. Регулируя состав Sn02, легко регулировать чувствительность границы к СО. На основании проведенных исследований предложена модельная электрохимическая система РЬ02/ Н+-ТЭЛ / (Sn02, Pt), способная быстро и селективно откликаться на изменение содержания СО в воздухе даже в присутствии таких газов-восстановителей, как Н2 и углеводороды (рис.9).
Исследовано поведение границ Ме02/ №+-ТЭЛ на воздухе в присутствии углекислого и сернистого газов. Показано, что системы, блокированные к переносу ионов Na+, не чувствительны к изменению состава газовой фазы. Сам потенциал неустойчив и чувствителен к методу изготовления границы. Системы с ТЭЛ, способными к гидратации, способны откликаться на содержание кислых газов в воздухе. Добиться селективности этих систем к отдельному газу оказалось возможным, изменяя кислотность поверхности электродов. Введение в состав Sn02 ионов, повышающих кислотность поверхности (V, Nb, Та), приводит к понижению чувствительности системы к С02 (рис. 10).
ОСНОВНЫЕ РЕЗУЛЬТАТЫ РАБОТЫ
Впервые измерены токи эмиссии из твердых электролитов Na20.11Al203 и Na5Gd0,9Zr0,iSi4O2 и контактная разность потенциалов между натрием и твердыми электролитами типа Na5MSi402, где M=Y, Eu, Gd, Yb в интервале температур от 230 до 400°С. Работа выхода иона Na+ из твердого электролита меньше, чем из чистого металла.
Впервые исследованы процессы ионной инжекции ионов серебра и меди в твердофазных системах с использованием твердых электролитов. Показано, что токи обмена границы с интеркалатным электродом более чем на порядок превышают токи обмена с металлическим электродом.
Методом квантово-химического моделирования показана возможность миграции однозарядных катионов по поверхности рутилоподобных оксидов. Показано, что барьеры на пути миграции минимальны для катионов Na+. Установлена возможность перехода поверхностной миграции протона в объемную. Показано, что для Sn02 преобладает поверхностная миграция протона, а для Pb02 - объемная.
Экспериментально обнаружено возникновение протонной проводимости на поверхности диоксида олова. Показано, что величина протонной проводимости определяется количеством адсорбированной воды и температурой, Установлены условия, при которых ионная составляющая проводимости Sn02 превышает 95% от общей проводимости.
Изучена проводимость распределенных структур CsHS04 - Sn02. Показано, что проводимость распределенных структур имеет смешанный протонно-электронный характер. Величина проводимости имеет немонотонный характер. Максимум протонной и электронной составляющих проводимости наблюдается в смеси, содержащей 50% SnC по объему.
Изучено поведение границы РЬ02 с солями фосфорвольфрамовой кислоты (ФВК). Установлено, что эта граница имеет достаточно высокие токи обмена, связанные с внедрением протонов в кристаллическую решетку РЬ02, и абсолютно не чувствительна по отношению к изменению состава газовой среды.
Показано, что эквивалентная схема импеданса электрохимической ячейки Sn02/Na+-T3/ Sn02 содержит две цепочки, одна из которых соответствует переносу Na+ в объеме зерна и через контакт соседних зерен, а вторая - переносу Na+ по гидратированным границам зерен. Электрохимическая активность границы Sn02/Na+-T3JI по отношению к С02 определяется гидратируемостью поверхности ТЭЛ и электродного материала.
На основании изучения закономерностей ионного переноса между ионпроводящей и полупроводниковой фазами получены электрохимические системы, способные селективно изменять свою ЭДС при изменении концентраций Н2, СО и С02 в газовой фазе.
Основные результаты диссертации опубликованы в следующих работах:
1. Малов Ю.И., Укше Е.А., Леонова Л.С., Букун Н.Г., Надхина СЕ. Термоионная эмиссия из твердых электролитов //Журнал физической химии. Т.56. 1982. С.1879-Ш2.
2. Вершинин Н.Н., Малов Ю.И., Надхина С.Е., Укше Е.А. Электрохимическая инжекция меди в дисульфид титанаЮлектрохимия. Т. 19. 1983.€:567-569.
3. Вершинин Н.Н., Малов Ю.И., Надхина СЕ. Электрохимическое исследованиё'сульфидов меди //Электрохимия. Т.2]. 1985. С.111-113.
4. Леонова Л.С., Коростелева А.И., Надхина СЕ. Электропроводность твердых гидратов вольфрамофосфата аммония //Электрохимия. Т.26. 1990. С. 1511 -1513 .
5. Добровольский Ю.А., Леонова Л.С, Укше Е.А., Ермолаева СИ., Надхина С. Ev Определение углекислого газа в газовых средах //Метрология. Т.6. 1991. С.38-45.