Закономерности процесса формования электродов на основе оксида меди и влияние параметров процесса на эксплуатационные характеристики литиевых источников тока

В третьей главе представлены результаты исследования влияния состава активной массы, параметров процессов гранулирования и формования ленточных электродов на электрические и физико-механические характеристики оксидно-медных электродов.

Показано, что при увеличении содержания связующего в оксидно-медной массе от 5 .7 до 13 . 15% при невысоком содержании токопроводящей добавки (5 .7%) или при

пропорциональном снижении от 10 . 12% до 5 .7% наблюдается повышение удельных емкости и энергии электродов, а также их прочности. Относительно малое содержание токопроводящей добавки не снижает электрические характеристики, т.к. роль токопроводящей добавки играет мелкодисперсная медь, 15 .20 мин. В этом случае обеспечиваются высокие электрические и физико-механические характеристики активных масс и электродных лент (рис. 4 и 5) и более чем в 2 раза сокращается суммарная продолжительность сушки гранул. Показано, что наиболее эффективен для гранулирования оксидномедной массы в условиях серийного и мелкосерийного производства дисковый гранулятор с перфорацией в виде ступенчатых отверстий. Оптимизированы форма и размеры.

Оптимальными являются размеры гранул в интервале 5 . 15 мм. Удельная емкость и прочность электродов, изготовленных из таких гранул, близки к максимальным (рис.2 и 3, пл. 1 - толщина формуемых лент активной массы). Уменьшение размеров гранул менее 3 мм существенно снижает удельную емкость и прочность электродов. Рекомендовано производить сушку гранулированной оксидномедной массы в два этапа: первый - при температуре 150 .160°С, затем, после удаления части влаги, окончательно сушить массу при температуре 130 .135°С. Время сушки при 150 .160°С не должна превышать активной массы оксидномедных ленточных электродов, разряжаемых током плотностью Менее 1 мА/см2 приводит к существенному росту их удельной (по объему) емкости и прочности, при этом достижение плотности активного слоя 2,8 г/см3 не приводит к появлению максимумов на кривых Q. Дальнейшее увеличение плотности оксидно-медных лент прокаткой малоэффективно, т.к. требует проведения дополнительных обжатий в валках диаметром более 250 мм. Увеличение плотности активного слоя свыше 2,8 г/см3 приводит к существенному снижению коэффициента.

Получены зависимости удельной емкости и прочности электродных лент и плотности активного слоя от параметров процессов гранулирования и формования описываются однотипными зависимостями. Показано, что плотность активной массы может служить критерием оценки емкости и прочности электродных лент. Уравнения регрессии, связывающие плотность и прочность электродов с плотностью их активного слоя хорошо описываются полиномами второго порядка. Установлены условия устойчивости процесса формования оксидномедных электродных лент:

1) температуры процесса: max = 4, (W - температура кипения пропитывающей жидкости);

2) обеспечения достаточного относительного содержания q пропитывающей жидкости в лентах активной массы перед их накаткой на токоотвод.

3) ограничения обжатия е лент при накатке на токоотвод предельными обжатиями: е = 1,2 < е < е = 2,3;

4) ограничения скорости формования электродных лент максимальной скоростью, определяемой критерием CD/D - для гладких валков (щ/PV, = 5,25 (с-м)"~ допустимая деформация растяжения лент.

Разработка механизированной технологии формования ленточных оксидномедных электродов предполагает установление закономерностей процессов активной массы и накатки их на токоотвод, а также сопутствующих им процесс, отставания, уширения, усадки, сушки лент, \их деформационных характеристик, влияния параметров процесса формования 1 параметров оборудования на плотность активной массы, т.к. плотность управляемый в ходе формования, фактор определяющий эксплуатационные характеристики электродов,

В результате исследования опережения, усадки, сушки, расширения и деформационных характеристик оксидномедных лент в процессе формования получены: - уравнения частных зависимостей относительного опережения Sm от толщины 1 и плотности 1 лент и диаметра формующих валков, а также общее критериальное уравнение влияния этих факторов на опережение. Выше приведенные зависимости положены в основу математического аппарата расчета параметров процесса формования оксидномедных электродных лент и алгоритма управления процессом формования. Исходными данными являются: удельная емкость электрода Q, его толщина h (обычно 0,5 < h, < 1,0 мм), толщина сетки-токоотвода h коэффициент открытия сетки К плотность гранул активной массы у, диаметр валков D, длина бочки валков формования и накатки (&2), коэффициент шероховатости валков CSHR, длина ленты I между зазором валков формования и накатки, температура нагревателей ленты в межвалковом пространстве t (t < f max). Вычисляются: эффективная толщина токоотвода плотность активного слоя электродов (рекомендуемые значения: 2,6 < 2,8 г/см3), плотность формуемых лент активной массы.

Разработанное математическое описание использовано для оптимизации параметров процесса формования оксидномедных электродов и параметров прокатного оборудования. Показано, что для достижения плотности = 2,6 .2,8 г/см3 минимальный диаметр валков формующих устройств должен составлять 150 . 160 мм. Достижение большей плотности без введения дополнительных уплотняющих проходов невозможно. С увеличением толщины прокатанных электродных лент область возможного варьирования параметров D и hA расширяется. Предложенный алгоритм позволяет определять значения оптимальных параметров процесса формования электродов, при которых достигается оптимальная плотность активного слоя электродов при минимальном числе проходов, что обеспечивает высокое качество электродов, высокую производительность процесса и малую материалоемкость оборудования, т.к. формование электродных лент производится в 2 прохода.

В пятой главе

изложены результаты сравнительных испытаний электродов, оценки эффективности механизированной технологии и внедрения разработанных технических решений.

Показано, что в результате учета выявленных в процессе исследования зависимостей эксплуатационных характеристик от параметров процессов гранулирования и формования, а также зависимостей самого процесса формования позволил увеличить плотность формуемых электродов и повысить их удельную емкость с 900 . 1000 А-ч/дм3 до 1400 . 1500 А-ч/дм3. НРЦ свежеприготовленных элементов составляло 2,7 .2,9 В, после частичного технологического разряда -1,8 . 1,9В. Рабочее напряжение разряда обычно составляло 1,5 .1,1 В (реже до 0,9 В). Макеты источников показали свою работоспособность в диапазоне температур от - 20 до + 60°С, при этом для низких температур (- 20°С) при плотности тока разряда менее 0,5 мА/см2 снижение емкости составляло 3 5% емкости при +20°С, при плотности тока разряда 0,8 . 1 мА/см2 наблюдалось снижение емкости на 60 .80%. При высоких температурах (до + 60°С) при плотностях тока ОД .0,5 мА/см2 емкость либо была постоянной либо уменьшалась по мере увеличения времени разряда на З .Ю%. Для относительно больших плотностей тока разряда (1,5 . 2 мА/см2) наблюдался нелинейный рост емкости элементов по мере увеличения температуры разряда плотности тока, который при 2 мА/см2 доходил до 8 12% емкости при +20°С. Саморазряд элементов при хранении в течение первых 2-х лет при комнатной температуре cоставил 4 .8%, при +40°С - 14 .20%, причем потеря емкости нелинейно уменьшалась по мере хранения и после 12 месяцев стабилизировалась на уровне 2 3% в год.

Страница:  1  2  3  4 


Другие рефераты на тему «Химия»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы