Введение в теорию многоэлектронного атома. Элементы теории многоэлектронных атомов

Отдельные диагональные слагаемые этой таблицы равны Vi= –Ze2/ri. Каждое из них представляет из себя энергию электростатического кулоновского притяжения одного из электронов к ядру. Недиагональные слагаемые Vij=+Ze2/rij. Полное выражение электростатической потенциальной энегии в атоме: Результирующий эффективный потенциал межэлек

тронного отталкивания превращается в эффективный потенциал "экранирования" ядра:

s(ri) - заряд экранирования (функция экранирования) отдельного электрона внутренними электронами, более близкими к ядру.

В этом случае потенциальная кулоновская энергия притяжения всех электронов к ядру дополняется эффективной потенциальной функцией экранирования ядра, и получается эффективное приближённое аддитивное выражение для всей кулоновской потенциальной энергии электронной оболочки

Микросостояния и атомные термы в приближении Рассела-Саундерса.

Этот раздел целесообразно рассмотреть на конкретных примерах.

Содержание. Электронная конфигурация. Микросостояния и их систематизация. Порядок учёта кулоновских взаимодействий и постадийная классификация дискретных электронных уровней и состояний атома (электронно-ядерное притяжение и орбитальные уровни, межэлектронное отталкивание и атомные термы Рассел-Саундерса, спин-спиновая корреляция и запрет Паули). Суммарные квантовые числа ML,MS,L,S. Атомное внутреннее квантовое число J. Термы нормальные и обращённые. Правила Хунда (1-е, 2-е и 3-е). Относительная шкала энергии атомных термов. Спектральные переходы и правила отбора. Атомные уровни в магнитном поле, эффект Зеемана (практикум).

Электронная конфигурация представляет собой исходное понятие. Оно определяется в нулевом приближении в оценке энергии. Далее постепенно учитываются всё более тонкие взаимодействия, и возникает более точная картина состояний и уровней многоэлектронного атома. Если атомный подуровень заселён неполностью, то возникает несколько различных микросостояний. Их характеристики непосредственно определяются комбинаторикой размещений электронов в системе спин-орбиталей.

Если n электронов заселяют g спин-орбиталей, то одно из формальных обозначений конфигурации (g,n). В её пределах число возможных микросостояний определяется согласно статистике Ферми: W(g,n) = g! / [n! (g - n) !].

Пример 1: основная электронная конфигурация атома углерода C (1s22s22p2)

Конфигурация p2 (атомы IV группы элементов C, Si. .). W(6,2) = 6! / [2! (6 - 2) !] =15

Перечислим все возможные варианты орбитальных размещений и спиновых комбина-ций 2-х электронов на трёх АО:

Орбитальные распределения двух электронов

Возможно всего шесть размещений внутри p-АО без учёта спина Орбитальные распре-деления можно охарак-теризовать комбинаци-ями квантовых чисел частиц (m1, m2):

(+1,+1) А (0, 0) Б (- 1, - 1) В (+1, 0) Г (+1, - 1) Д (0, - 1) Е

Комбинации пространственных (орбитальных) состояний частиц в коллективе легко описать разными способами. Возможные спиновые комбинации в системе двух частиц-фермионов с половинным спином (электронов, протонов,. .) можно представить разными способами. Можно изобразить ориентации спинов разными символами (стрелками, знаками или греческими буквами). Результат сложения компонент момента импульса вдоль оси вращения представми в одной из строк таблицы значениями суммарного магнитногоквантового числа. Все возможные комбинации спиновых векторво отдельных электронов попадут в таблицу:

Способ 1

­­

­Ї

Ї­

ЇЇ

Эти три способа

Способ 2

(++)

(– +)

(–+)

(– –)

Описания

Способ 3

aa

ab

ba

bb

Идентичны

 

Можно как-либо еще, а в итоге будет:

где

MS(1,2) = mS(1) + mS(2)

MS(1,2)

1

0

0

-1

MS(1,2)

+1

0

–1

Микросостояния в рамке,

выделенные на тёмном фоне,

принципу Паули

не удовлетворяют и должны

быть исключены из

дальнейшего анализа

A 

А  А

А

A 

Б  Б

A 

A 

В  В

A 

Г

Г

Г

Г

Д

Д

Д

Д

Е

Е

Е

Е

Страница:  1  2  3  4 


Другие рефераты на тему «Химия»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы