Теория и практика применения лазерной спектроскопии (на примере анализа объектов окружающей среды)
Активная лазерная спектроскопия – один из методов нелинейной спектроскопии, исследующий поглощение или рассеяние пучка света в среде, в которой предварительно (с помощью дополнительного лазерного излучения определенных частот) селективно возбуждены и (или) сфазированы изучаемые оптические моды. Такое активное лазерное «приготовление» среды (накачка) меняет картину взаимодействия зондирую
щего (пробного) излучения со средой.
Активная лазерная спектроскопия основана на эффекте нелинейного взаимодействия интенсивного лазерного излучения и оптической среды. Мощное излучение накачки нарушает термодинамическое равновесие в среде, наводит корреляции между образующими ее частицами, возбуждает определенные внутренние движения в них и т.п., а более слабое зондирующее излучение выявляет наведенные возмущения и кинетику их затухания.
Методы активной лазерной спектроскопии отличаются типом исследуемого резонанса, характером оптического отклика среды, а также способом зондирования и измеряемым параметром (интенсивность, фаза, поляризация). Активная лазерная спектроскопия поглощения исследует оптический резонанс среды, проявляющийся в одно- или многофотонном поглощении света; активная лазерная спектроскопия рассеяния – резонанс, проявляющийся в рассеянии света (комбинационном, рэлеевском, Мандельштама-Бриллюэна, гиперкомбинационном, гиперрэлеевском и т.п.). Оптический отклик среды на воздействие волн накачки и зондирующего излучения может быть когерентным (связанным с наведенной нелинейной оптической поляризацией среды) или некогерентным (связанным с оптически-индуцированным возмущением населенностей уровней энергии), соответственно различают когерентную и некогерентную активную лазерную спектроскопию.
Активная лазерная спектроскопия называется стационарной или нестационарной в зависимости от того, исследуется установившийся (стационарный) или неустановившийся (переходный, нестационарный) оптический отклик среды. В последнем случае для возбуждения и зондирования среды используются короткие лазерные импульсы, длительность которых меньше характерных времен установления и релаксации исследуемых возбужденных состояний среды.
С помощью зондирующего излучения можно изучать модуляцию оптических характеристик среды (модуляционный вариант активной лазерной спектроскопии), вызываемую излучением накачки; кроме того, благодаря возмущению среды накачкой могут появляться новые спектральные или пространственные компоненты зондирующего излучения, на их исследовании основан генерационный вариант активной лазерной спектроскопии. Различные способы возбуждения и зондирования, применяемые в активной лазерной спектроскопии, приведены на рис. на примере двухуровневой системы.
Одним из методов активной лазерной спектроскопии является когерентная спектроскопия комбинационного рассеяния света. С помощью активной лазерной спектроскопии удается решать задачи, недоступные другим методам спектроскопии поглощения или рассеяния света, значительно увеличить информативность оптической спектроскопии, повысить отношение сигнал/шум на выходе традиционных спектрометров, улучшить их спектральное, пространственное и временное разрешение.
2. Виды лазеров и их применение
По режиму работы лазеры можно разделить на импульсные и непрерывного действия. По виду активной среды лазеры делятся на газовые, жидкостные, полупроводниковые и твердотельные. По способу накачки: лазеры с оптической накачкой, газоразрядные лазеры, химические лазеры, ижекционные, лазеры и с электронной накачкой.
Для всех лазеров характерны следующие особенности излучения:
1) большая временная и пространственная когерентность. Время когерентности τ составляет 10-3с, что соответствует длине когерентности
;
2) строгая монохроматичность: ;
3) большая плотность потока энергии;
4) очень малое угловое расхождение в пучке (от 5 · 10-4 радиан до 4 · 10-2радиан).
Коэффициент полезного действия лазеров изменяется от 0,01% (для гелий-неонового лазера) до 75% (для лазера на стекле с неодимом).
Мощность непрерывного излучения лазеров изменяется от 10-3Вт (гелий-неоновый лазер) до 105Вт (газодинамический лазер на CO2). Мощность импульсного излучения изменяется от 10 Вт (полупроводниковые лазеры) до 1013Вт (лазеры на стекле с неодимом).
Особенности лазерного излучения находят самое разнообразное применение. Способность лазера концентрировать световую энергию в пространстве, времени и узком спектральном интервале может быть использована двояко:
1) нерезонансное воздействие мощных световых потоков на вещество в непрерывном и импульсном режимах (лазерная обработка материалов), использование мощных лазеров для решения проблемы термоядерного синтеза;
2) резонансное воздействие на атомы, молекулы и молекулярные комплексы, вызывающие процессы фотодиссоциации, фотоионизации, фотохимические реакции.
Нерезонансное, тепловое воздействие лазерного излучения, используемое в лазерной технологии обработки материалов, упрощает операцию получения отверстий в твердых, хрупких, тугоплавких материалах. Например, лазерная технология эффективна при изготовлении алмазных фильер – рабочего инструмента машин для волочения проволоки: через отверстие в фильере протягивается обрабатываемый материал. Лазерная технология используется для резки материала, нанесения рисунка на его поверхность, образование нужного микрорельефа на ней. Лазерная сварка позволяет соединить металлы и сплавы, не свариваемые обычным способом.
В частности, в медицине (хирургии) лазерный луч в ряде случаев с успехом используется в качестве хирургического скальпеля. В офтальмологии лазерным лучом прикрепляют отслоившуюся сетчатку глаза. Отметим, что в медицине используют и резонансное воздействие лазерного луча на ткани организма, в частности, маломощное излучение гелий-неонового лазера. Механизмы такого воздействия пока в деталях не изучены, предполагается, что его необычно высокая эффективность при очень малой мощности излучения (десятки милливатт) объясняется цепными фотохимическими реакциями, возникающими под воздействием лазерного излучения.
Применение лазеров в спектроскопии резко повысило возможность традиционных методов, кроме того, позволило создать методы, основанные на принципиально новых физических принципах. Чувствительность спектроскопических методов доведена до предельного уровня, ограниченного регистрацией единичных атомов и молекул. Методы лазерной спектроскопии используются в лазерной химии, лазерном разделении изотопов.
Лазеры широко применяют в измерительной технике. Например, лазерные интерферометры на гелий-неоновых лазерах позволяют с большой точностью производить юстировочные и нивелировочные работы. Широко используются лазерные светодальномеры и даже лазерные рулетки на портативных полупроводниковых лазерах.
Другие рефераты на тему «Экология и охрана природы»:
- Преобразование и сохранение естественной среды обитания человека
- Разработка мер по совершенствованию организации сбора и утилизации бытовых отходов в г. Тулуне
- Расчет загрязнения водного объекта и атмосферного воздуха. Взрывоопасность технологического объекта
- Диоксид углерода
- Организация водоохранной деятельности
Поиск рефератов
Последние рефераты раздела
- Влияние Чекмагушевского молочного завода на загрязнение вод реки Чебекей
- Влияние антропогенного фактора на загрязнение реки Ляля
- Киотский протокол - как механизм регулирования глобальных экологических проблем на международном уровне
- Лицензирование природопользования, деятельности в области охраны окружающей среды и обеспечения экологической безопасности
- Мировые тенденции развития ядерной технологии
- Негативные изменения состояния водного бассейна крупного города под влиянием деятельности человека
- Общественная экологическая экспертиза и экологический контроль