Влияние Новочеркасской ГЭС на содержание бенз(а)пирена в почвах
Целью исследования являлось:
Изучить содержание 3,4–бенз(а)пирена в почвах и растениях зоны влияния Новочеркасской ГРЭС
Задачи:
1. Провести оценку тенденций накопления 3,4 – бенз(а)пирена в почвах и растениях, зоны влияния Новочеркасской ГРЭС;
2. Определить дополнительные источники эмиссии поллютанта;
3. Выявить особенности аккумуляции 3,4 – бенз(а)пирена в зависимости от ра
сположения по отношению к основному источнику выбросов и адсорбционных свойств почвы;
4. Выявить слои наиболее интенсивной аккумуляции поллютанта.
Проведенные исследования – часть совместной работы специалистов научно – образовательного эколого – аналитического центра системных исследований, математического моделирования и геоэкологической безопасности юга России (Ростова–на–Дону), директором которого является к.х.н., Борисенко Н.И.; и сотрудников Донского государственного аграрного университета (п. Персиановский), под руководством д.б.н., проф. Назаренко О.Г.
1. Обзор литературы
1.1 Влияние тепловых электростанций на экологическую обстановку прилегающих территорий
Доля мирового производства электроэнергии, принадлежащая тепловым электростанциям (ТЭС) составляет около 63%. ТЭС, используя для производства электроэнергии и тепла различные виды минерального топлива (уголь, мзут, газ), выбрасывают в атмосферу с дымовыми газами и несгоревшими частицами топлива токсичные компоненты. При сгорании углеводородного топлива образуются следующие поллютанты: оксиды серы, азота, ванадия, зола, сажа, канцерогенные вещества.
Канцерогенными веществами являются представители класса ПАУ и, прежде всего, канцероген и мутаген первого класса опасности, подлежащий обязательному экологическому контролю - 3,4-бенз(а)пирен (С20Н12). Общая схема образования 3,4-бенз(а)пирена при пиролизе метана следующая: 20СН4 10С2Н2+30Н2 С20Н12+34Н2. (Дикун, 1979).
По данным Государственного доклада «О состоянии окружающей природной среды, 1997», НчГРЭС представляет собой крупнейший источник выбросов загрязняющих веществ в биосферу и является предприятием первого класса опасности. На её долю приходится 1 % всех выбросов в РФ и более 50 % - в Ростовской области. Основная их часть выпадает на г. Новочеркасск и прилегающие к нему территории.
Общий объём выбросов ОАО «НчГРЭС» до 2007 года составлял более 200 тысяч тонн/год. При переводе энергоблоков на природное газовое топливо к 2008 году удалось добиться снижения общего объёма выбросов до 70 тысяч тонн/год. Тем не менее, НчГРЭС остаётся предприятием первого класса опасности, крупнейшим источников выбросов в Ростовской области и на юге России (Белоусова, 2001).
В настоящей главе представлен обзор литературных источников, характеризующих подробную картину загрязнения атмосферного воздуха, почв и растительности территорий зоны влияния НчГРЭС.
1.2 Структура, химические и физические свойства ПАУ
Полициклические ароматические углеводороды (ПАУ) - высокомолекулярные органические соединения, основными структурными элементами которых являются соединенные между собой бензольные кольца. Два соединенных между собой бензольных кольца в молекуле ПАУ или имеют два общих атома углерода или соединены углерод-углеродной связью (Шурубор, 2000).
ПАУ могут быть замещенными и незамещенными.
Незамещенные ПАУ рассматривают как производные молекулы простейших поликонденсированных соединений бензола–нафталина и дифенила.
Замещенные ПАУ в своем составе как минимум вместо одного атома водорода, содержат какую–нибудь функциональную группу.
Структурными аналогами ПАУ являются гетероциклические ароматические соединения, в состав молекул которых вместо атома углерода входят атомы других химических элементов (гетероатомы).
Структуру ПАУ в зависимости от относительного расположения бензольных колец можно разделить на две группы, два типа сочленения: линейное в антрацене, тетрацене и др. и угловое, например, в фенантрене, хризене, пирене.
Особый случай углового сочленения–наличие общих для трех сочлененных циклов атома углерода, как, например, в пирене (Кулакова. 1982).
ПАУ, являющиеся производными нафталина, составляют группу ката-анелированных ПАУ. ПАУ, являющиеся производными дифенила, составляют группу пери-конденсированных ПАУ.
3,4–бенз(а)пирен относится к пятикольчатым незамещенным пери-конденсированным ПАУ (рис.1 ).
Эти соединения (ПАУ) способны вступать в реакции замещения и присоединения. Легче в такие реакции вступают менее стабильные углеводороды. Для ПАУ характерны реакции электрофильного замещения. ПАУ не вступают в обычных условиях в реакции присоединения, что объясняется особенностью их электронного строения. В особых условиях ПАУ могут вступать в реакции присоединения, например, присоединение к бензольному кольцу галогенов может происходить под действием ультрафиолетового облучения, а присоединение водорода с образованием циклопарафиновых углеводородов может происходить в присутствии катализаторов при повышенной температуре (Шабад,1982).
ПАУ способны окисляться с образованием хинонов и карбоновых кислот; могут разлагаться под действием сильных концентрированных кислот, токов высокой частоты, ультразвука.
Рис. 1. Структурная формула 3,4–бенз(а)пирена
ПАУ-молекулярные соединения, представляющие собой при комнатной температуре кристаллы (за исключением ряда производных нафталина).
Температура их кипения и плавления растет с увеличением числа бензольных колец, достигая соответственно у нафталина 80 и 2180C, у 3,4–бенз(а)пирена 1770C и 4560C (Дикун, 1979).
Растворимость ПАУ в чистой воде невелика и значительно варьирует от одного углеводорода к другому. Растворимость их в органических растворителях уменьшается с увеличением молекулярного веса в зависимости от взаимного расположения конденсированных бензольных колец в молекуле. Растворимость пирена в воде в тысячу раз выше, чем 3,4–бенз(а)пирена, которая в ряду изученных ПАУ минимальна. Солевой состав не оказывает влияния на растворимость ПАУ. Растворимость ПАУ в воде растет в присутствии бензола, нефти и нефтепродуктов. ПАУ обладают магнитными свойствами, являются полупроводниками. Отличительной способностью ПАУ является их способность люминесцировать. Люминесцирующие соединения имеют свои спектры излучения (люминесценции) и поглощения (возбуждения). На изучении электронных спектров поглощения и излучения, лежащих в видимой и ультрафиолетовой частях спектра, основан анализ ПАУ. Люминесценцию относят к физическим свойствам ПАУ (Теплицкая,1980).
1.3 Источники поступления ПАУ в окружающую среду
Выделяют четыре группы факторов, способствующих образованию ПАУ:
1. космические;
2. эндогенные геологические;
3. биогеохимические;
4. техногенные.
Обычно ПАУ образуются в процессе разложения органического вещества при температурах 650-9000C и недостатке кислорода. Состав и строение, образовавшихся таким образом ПАУ, зависит от природы исходного материала и от температуры, при которой они образовались.
Другие рефераты на тему «Экология и охрана природы»:
- Методы и законы социальной экологии
- Понятие государственного управления в отрасли охраны окружающей среды
- Основные направления повышения экологической безопасности автомобилей
- Развитие сотрудничества в области интегрированного управления водными ресурсами в Центральной Азии
- Заповедники северного кавказа
Поиск рефератов
Последние рефераты раздела
- Влияние Чекмагушевского молочного завода на загрязнение вод реки Чебекей
- Влияние антропогенного фактора на загрязнение реки Ляля
- Киотский протокол - как механизм регулирования глобальных экологических проблем на международном уровне
- Лицензирование природопользования, деятельности в области охраны окружающей среды и обеспечения экологической безопасности
- Мировые тенденции развития ядерной технологии
- Негативные изменения состояния водного бассейна крупного города под влиянием деятельности человека
- Общественная экологическая экспертиза и экологический контроль