Золотое сечение

Введение

Понятие о «золотом сечении» Иоганн Kеплер говорил, что геометрия владеет двумя сокровищами - теоремой Пифагора и «золотым сечением». И если первое из этих двух сокровищ можно сравнить с мерой золота, то второе с драгоценным камнем. Теорему Пифагора знает каждый школьник, а что такое золотое сечение - далеко не все.

Человек различает окружающие его предметы по форме. Ин

терес к какому-либо объекту может быть продиктован жизненной необходимостью, а может быть вызван его красотой. Форма, в основе построения которой лежат сочетание симметрии и золотого сечения, способствует наилучшему зрительному восприятию и появлению ощущения красоты и гармонии. Целое всегда состоит из частей, части разной величины находятся в определенном отношении друг к другу и к целому. Принцип «золотого сечения» - высшее проявление структурного и функционального совершенства целого и его частей в искусстве, науке, технике и природе.

По своей природе термин «золотое сечение» в первую очередь относится к математическим понятиям, так как его сущность определяется неким соотношением. Так что же такое «золотое сечение»?

«Золотое сечение» – это гармоническое деление, деление в крайнем и среднем отношении, - деление отрезка AB на две части таким образом, что большая его часть AC является средней пропорциональной между всем отрезком AB и меньшей его частью CB. Математики установили, что примерное значение идеальной пропорции «золотого сечения» равняется 1,618 . Полученное значение есть знаменитое число «фи», названное так американским математиком Марком Барром по первой букве имени великого скульптора Фидия, который, по преданию, использовал «золотое сечение» в своих работах.

Геометрическое построение «золотого сечения» отрезка AB осуществляется так: в точке B восстанавливают перпендикуляр к AB, на нем откладывают отрезок BE=1/2 AB, соединяют A и E, откладывают ED = EB и, наконец, AC = AD, тогда будет AB : AC = AC: AB.

1 История «золотого сечения»

В дошедшей до нас античной литературе «золотое сечение» впервые встречается во II книге «Начал» Евклида, где дается геометрическое построение «золотого сечения», равносильное решению равенства квадратного уравнения вида x(a+x) = a². Евклид применяет «золотое сечение» при построении правильных 5- и 10-угольников, а также в стереометрии при построении правильных 12- и 20-гранников. Несомненно, что «золотое сечение» было известно и до Евклида. Весьма вероятно, что задача «золотого сечения» была решена еще и пифагорейцами, которым приписываются построение правильного 5-угольника и геометрические постороения, равносильные решению квадратных уравнений. После Евклида исследованием золотого сечения занимались Гипксил (2 в. до н.э.), Папп Александрийский (3 в. н.э.) и др. В средневековой Европе с «золотым сечением» познакомились по арабским переводам «Начал» Евклида. Переводчик и комментатор Евклида Дж. Кампано из Новары (13 в.) добавил к книге «Начал» предложение, содержащее арифметическое доказательство несоизмеримости отрезка и обеих частей его «золотого сечения».

В 15-16 вв. (в эпоху Возрождения, или Ренессанс) усилился интерес к «золотому сечению» среди ученых и художников в связи с его применениями как в геометрии, так и в искусстве, особенно в архитектуре. Например, итальянский мыслитель Лука Пачолли посвятил «золотому сечению» трактат «О божественной пропорции». Термин «золотое сечение» был популяризован Леонардо, который придавал большое значение гармоническим соотношениям в живописи, архитектуре и строении человеческого тела. Гуманизм Возрождения заключался, в частности, в том, что пентаграмма была выведена из черной магии, а пропорции «золотого сечения» Леонардо усмотрел в строении человеческого тела.

Ряд Фибоначчи. С историей «золотого сечения» косвенным образом связано имя итальянского математика-монаха Леонардо из Пизы, более известного под именем Фибоначчи. Он много путешествовал по Востоку, познакомил Европу с индийскими (арабскими) цифрами. В 1202 г. вышел в свет его математический труд “Книга об абаке” (счетной доске), в котором были собраны все известные на то время задачи. Одна из задач гласила “Сколько пар кроликов в один год от одной пары родится”. Размышляя на эту тему, Фибоначчи выстроил такой ряд цифр:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, и т.д.

Ряд чисел 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и т.д. известен как ряд Фибоначчи. Особенность последовательности чисел состоит в том, что каждый ее член, начиная с третьего, равен сумме двух предыдущих 2 + 3= 5; 3 + 5= 8; 5 + 8= 13, 8 + 13= 21; 13 + 21= 34 и т.д., а отношение смежных чисел ряда приближается к отношению золотого деления. Так, 21 : 34= 0,617, а 34 : 55= 0,618. Это отношение обозначается символом Ф. Только это отношение – 0,618 : 0,382 – дает непрерывное деление отрезка прямой в «золотой» пропорции, увеличение его или уменьшение до бесконечности, когда меньший отрезок так относится к большему, как больший ко всему.

2 «Золотое сечение»: применение в культуре и искусстве

Архитектура.

Давно замечено: строй вещей, скомпонованных по «золотому сечению», обладает в искусстве совершенно исключительной силой воздействия, поскольку создает ощущение предельной органичности. “Золотое сечение” дает наиболее спокойное соотношение размеров тех или иных длин.

Пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями «золотого сечения» при их создании. В соответствии с этим принципом построены лучшие памятники Древней Греции и Ренессанса. В фасаде древнегреческого храма Парфенона (V в. до н. э.) также присутствуют «золотые» пропорции. Отношение высоты здания к его длине равно 0,618. Если произвести деление Парфенона по “золотому сечению”, то получим те или иные выступы фасада.

Другим примером из архитектуры древности является Пантеон.

Известный русский архитектор М. Казаков в своем творчестве широко использовал “золотое сечение”.

Его талант был многогранным, но в большей степени он раскрылся в многочисленных осуществленных проектах жилых домов и усадеб. Например, “золотое сечение” можно обнаружить в архитектуре здания сената в Кремле. По проекту М. Казакова в Москве была построена Голицынская больница, которая в настоящее время называется Первой клинической больницей имени Н.И. Пирогова (Ленинский проспект, д. 5).

Еще один архитектурный шедевр Москвы, при возведении которого использовался принцип «золотого сечения», – дом Пашкова – является одним из наиболее совершенных произведений архитектуры В. Баженова. Прекрасное творение В. Баженова прочно вошло в ансамбль центра современной Москвы, обогатило его. Наружный вид дома сохранился почти без изменений до наших дней, несмотря на то, что он сильно обгорел в 1812г.

Живопись и киноискусство.

В композиции интереснейших произведений живописи "работает" та же пропорция.

Страница:  1  2  3 


Другие рефераты на тему «Биология и естествознание»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы