419 Выделение, изучение свойств микроорганизмов и их использование для выполнения подготовительных процессов переработки овчинно-мехового сырья

Причины, по которым до сих пор нет общепринятой схемы механизма действия ПАВ, известны – это отсутствие точных данных о строении и составе бактериальных мембран, а также помехи, которые возникают в результате влияния химических реагентов, присутствующих в среде выращивания. Однако в настоящее время на основе достаточно обширной научной информации можно предположить следующую модель действия ПАВ

на мембраны микроорганизмов. Сначала происходит адсорбция молекул ПАВ на поверхности мембраны, изменяя ее проницаемость с последующим нарушением целого ряды функций. Затем при достижении ККМ начинается солюбилизация одного из амфифильных компонентов мембраны белка или липида в зависимости от их локализации и типа детергента. В результате солюбилизации нарушается структурная организация гидрофобных областей мембраны, ответственных за ее целостность. В свою очередь, нарушения такого рода приводят к дезинтеграции мембраны, распаду ее на фрагменты и образованию смешанных мицелл, состоящих из молекул ПАВ и мембранных амфифилов /14/.

В связи с тем, что исследование лизиса мембран под действием ПАВ является одним из активно развивающихся подходов в изучении ее структурной организации, можно ожидать новых, более точных и информативных моделей взаимодействия детергентов с биомембранами.

Другим не менее важным аспектом действия ПАВ на микроорганизмы является их влияние на процессы обмена веществ. За нарушением целостности клеточных структур в результате взаимодействия с детергентами должны последовать изменения на таких ключевых участках микробного обмена веществ, как транспорт и биосинтез молекул, реакция окислительного фосфолирования, фотосинтез /16/.

При изучении влияния твинов на изменение активности накопления a-кетоглутаровой кислоты бактериями псевдомонадами установлено, что твины 60 и 80 заметно увеличивают накопление a-кетоглутарата. Показано, что твин 80 при 0,6%-й концентрации совместно с добавками изолейцина, метионина, серина, лизина, инозита, аспарата усиливает биосинтез витамина В12 и не влияет на биогенез пропионовой кислоты при выращивании пропионовокислых бактерий на основной питательной среде, содержащей молочную сыворотку. При добавлении в питательную среду плесневелого гриба аспергилла твинов 40, 60 и 80 биомасса последнего увеличивалась в 2,5 раза, что сопровождалось накоплением алкалоидов. Максимальное (100%-ое) увеличение накопления алкалоидов наблюдалась при добавлении твина 80 0,5 – ой концентрации. В присутствии этого детергента скорость поглощения питательных веществ из среды возрастала на 27–50%. Полагают, что твин 80 непосредственно не участвует в биосинтезе алкалоидов, а действует как ПАВ, облегчает транспорт питательных веществ в клетку. Скорость образования фумаровой кислоты и ее выход в культуре гриба ризопус в присутствии твина 60 увеличивается на 43%, а при твине 40 и 60 – на 18%. При смеси двух видов твина эффект зависит от количественного состояния индивидуальных твинов /17/.

Обработка изолированных гетероцист цианобактерий катионным детергентом цетилметиламмонийбромидом повышает их проницаемость для внеклеточных нуклеотидов. Эффектом другого рода, вызванным влиянием детергентов, является изменение скорости потребления кислорода различными микроорганизмами. После обработки клеток сальмонелл лаурилсульфатом натрия значительно понижается дегидрогеназная активность клеток, гликолиз, а также потребление кислорода. Культивирование обработанных детергентом бактерий на среде в присутствии 10% глицерина приводит к восстановлению активности этих процессов. Однако выращивание энтеробактерий, устойчивых к детергентам, на среде с глюкозой и аспарагином в присутствии ДСН (10%) приводит к дополнительным энергозатратам, в результате чего урожай клеток снижается на 20%, а утилизация глюкозы и поглощение кислорода ускоряются соответственно на 30–35 и 60–75% по сравнению с выращиванием на среде без ДСН /18/.

Снижение урожая клеток на 20% происходит также при варьировании соотношения количества источников углерода и азота, при замене глюкозы другими сахарами. Полученные результаты свидетельствуют о дополнительном расходе энергии на осуществление активного транспорта соединений вследствие снижения величины мембранного потенциала в присутствии ДСН. При добавлении к суспензии голодающих клеток вибрионов твина 80 наблюдается уменьшение объема клеток, усиление потребления кислорода и возрастание теплоотдачи. Предполагают, что ПАВ влияют на способность этих бактерий использовать связанные с поверхностью питательные вещества.

В работах Р.В. Кучера с сотрудниками показано, что ПАВ комплексно влияют на процесс микробиологического окисления н-алканов, что приводит к улучшению проницаемости клеточных мембран, увеличению активности дегидрогеназ и концентрации растворимого кислорода у дрожжей, а также к солюбилизации углеводородов. ПАВ положительно воздействую на изменение растворимости гексадекана в присутствии дрожжей. Солюбилизация углеводородов является начальной стадией процесса их микробиологического окисления /19/.

При изучении взаимозависимых связей между концентрацией растворенного кислорода, удельной скоростью роста и дегидрогеназной активностью в присутствии ПАВ установлено, что детергенты при ферментации не включаются в ферментную систему, а улучшают проницаемость клеточных мембран, увеличивают аэрацию культуральной жидкости и спосбствуют транспорту кислорода и субстрата к клеткам растущей культуры. Биологическое действие ПАВ на ферментативные процессы и взаимосвязь параметров ростамикроорганизмов объясняются, по-видимому, физико-химическими причинами, связанными с образованием мицелл в культуральной жидкости /20/.

Биоэнергетические процессы в микробных клетках также оказываются затронутыми при внесении детергентов в окружающую среду. В результате исследований влияния тритона Х-100 и дезоксихолата натрия на основную дыхательную цепь и цианидрезистентный путь переноса электролитов в митохондриях установлено, что в малых концентрациях тритон Х-100 ингибирует перенос электрона в электронно-транспортных цепях хлоропластов, митохондрий и бактерий. Предполагают, что механизм его действия при низких концентрациях заключается в модификации структуры некоторых участков мембраны. Кроме того, тритон Х-100, перераспределяясь между водной и гидрофобной фазами, вызывает такие структурные перестройки в липидах, которые приводят к отрыву от мембран довольно крупных фрагментов, содержащих окислительно-восстановительные фрагменты. Это и обуславливает ингибирование переноса электронов в дыхательные цепи. Полученные данные свидетельствуют также о неоднородности распределения ферментов цепи переноса электронов по мембране и существования фонда специфических белков, не связанных с остальными компонентами цепи. Интересно отметить, что при использовании целых клеток микрококков эндогенное дыхание в них под действием тритона Х-100 падало не полностью. Это означает, по-видимому, что клеточная стенка препятствует распаду цитоплазматической мембраны на отдельные мембранные пузырьки, как это, вероятно, происходит в протопластах. Доступность внутренней поверхности цитоплазматической мембраны при действии даже значительных концентраций детергента все равно лимитируется какими-то пространственными ограничениями.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 


Другие рефераты на тему «Биология и естествознание»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы