Линейные функции
Для нахождения направляющих векторов прямых используем условие параллельности прямой и плоскости
и условие, что прямая проходит через ось абсцисс, т.е. выполняется соотношение в точке (x,0,0).
подставляем из 1-го уравнения во второе, получим
Полагаем тогда .
Получили направляющий вектор первой прямой (6,-2,-3).
Аналогично для второй прямой (она проходит через точку (0,y,0)
Из второго уравнения
Косинус найдем по формуле:
№ 7. Найти координаты центра окружности радиусом 5, касающейся прямой в точке М (2,0), если известно, что точка С расположена в первой четверти.
Переформулируем задачу:
Найти точку, лежащую на прямой, перпендикулярной прямой , проходящей через точку М (2,0) и отстоящую от нее на 5 ед.
Запишем уравнение прямой в виде , коэффициент k найдем из условия перпендикулярности прямых
Получаем уравнение прямой
Используем формулу расстояния между двумя точками:
По условию второе решение не походит, т.к. x<0.
№ 8. Дана кривая
8.1. Доказать, что эта кривая — гипербола.
— это каноническое уравнение гиперболы. Приведем исходное уравнение к этому виду
Это каноническое уравнение гиперболы.
8.2 Найти координаты ее центра симметрии.
Сделаем схематический чертеж:
Центр симметрии гиперболы в точке .
.
8.3. Найти действительную и мнимую полуоси.
8.4. Записать уравнение фокальной оси.
Фокальная ось проходит через фокус , р-фокальный параметр (половина хорды, проведенной через фокус перпендикулярно действительной оси).
Уравнение , где
8.5. Построить данную гиперболу построение проведено в п.8.2.
№ 9. Дана кривая .
9.1. Доказать, что данная кривая — парабола.
Каноническое уравнение параболы , заданное уравнение приведем к этому виду
следовательно, имеем параболу.
9.2. Найти координаты ее вершины.
Если уравнение параболы записано в виде , координаты вершины .
9.3. Найти значение ее параметра р.
Из уравнения—— видно, что .
9.4. Записать уравнение ее оси симметрии.
Данная ось проходит через вершину параболы перпендикулярно оси ОХ, ее уравнение .
9.5. Построить данную параболу.
Все параметры известны. Найдем пересечение с осью OY.
№ 10. Дана кривая .
10.1. Доказать, что эта кривая — эллипс.
Каноническое уравнение эллипса
Общее уравнение кривой второго порядка:
.
Перепишем заданное уравнение:
Введем обозначения:
Если имеем эллипс. Проводим вычисления при a=8, b=6, c=17,d=-14, l=-23, f=-43.
следовательно, исходная кривая — эллипс.
10.2. Найти координаты центра его симметрии.
Применим формулу:
10.3. Найти его большую и малую полуоси.
Для этого приведем уравнение к каноническому виду, вычислим:
Уравнение запишем в виде:
где
Получим уравнение эллипса в новых координатах, где осями координат являются оси, полученные переносом начала координат в центр эллипса и поворотом осей на угол α, определяемый уравнением , при этом угловой коэффициент новой оси
10.4. Записать общее уравнение фокальной оси.
Фокальная ось проходит через фокус перпендикулярно оси . В новых координатах .
Воспользуемся формулой преобразования координат:
Осталось составить уравнение прямой, проходящей через точку с коэффициентом наклона 2. Общий вид такой прямой , получим:
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах