Линейные системы уравнений

Среди матриц размера и операций с ними в первую очередь необходимо отметить операцию умножения матрицы на матрицу. Необходимость введения операции умножения матриц возникает уже при первом взгляде на полученную векторную форму записи линейного уравнения . Векторы слева и

справа имеют равные компоненты. Так как коэффициенты в строках матрицы в общем произвольны по величине, то соответствующие компоненты вектора x не обязаны быть равными компонентам вектора y. Последнее означает, что умножение вектора x на матрицу A вызвало изменение длины и направления вектора x. Если аналогичное преобразование выполняется над вектором правой части до решения уравнения, то вектор левой части должен быть преобразован так же:

.

Фактически мы имеем дело с заменой системы координат. Рассмотрим методику вычисления коэффициентов результирующей матрицы уравнения:

,

где – элемент матрицы С, равный скалярному произведению вектор-строки матрицы В на вектор-столбец матрицы А.

Произведение матриц в общем случае не коммутативно. Ассоциативный и распределительный законы в матричных выражениях выполняются.

3. Нормы векторов и матриц

Интерпретация упорядоченного набора чисел, как вектора в многомерном пространстве, позволяет говорить и о его длине. В прямоугольной системе координат по известным длинам проекций на координатные оси длину самого вектора вычисляют, как корень квадратный из суммы квадратов проекций:

,

где – компоненты вектора ,

– евклидова норма вектора, его длина.

В качестве нормы в литературе иногда используют квадрат длины вектора или другое выражение с компонентами вектора, лишь бы оно обладало свойствами расстояния: было положительным, линейным и удовлетворяло неравенству треугольника.

Деление вектора на величину его нормы называют нормированием, т.е. приведением вектора к единичной длине.

Норма матрицы в принципе тоже может быть определена в виде корня квадратного из суммы квадратов ее элементов или другими выражениями со свойствами расстояний. Однако в ряде случаев работы с векторно-матричными выражениями нормы векторов и матриц должны быть согласованными ввиду того, что результатом произведения матрицы на вектор является опять же вектор. Если выражение для нормы вектора принято, то

,

где функция sup говорит о том, что из всех отношений норм, стоящих в числителе и знаменателе, взятых при любом векторе x, кроме нулевого, выбирается наименьшее, т.е. это функция выбора нижней границы значений. Согласованная матричная норма для евклидовой нормы вектора удовлетворяет неравенству

.

Нормы вектора и матрицы служат, в основном, для сопоставительной оценки матриц и векторов, указывая на возможный диапазон представления строгих числовых характеристик. К числу последних, в первую очередь, нужно отнести определители матриц, собственные значения и собственные векторы матриц и ряд других.

4. Матрицы и определители

Упорядоченный набор коэффициентов из системы линейных алгебраических уравнений используется для получения числовой характеристики, величина которой инвариантна по отношению к эквивалентным преобразованиям системы. Речь идет об определителе матрицы. Важное свойство определителей матрицы обнаруживается в связи с вычислением произведения матриц:

Учитывая это свойство и зная, что определитель единичной матрицы det(E)=1, можно найти матрицу B и ее определитель из уравнения:

откуда следует, что и .

Из свойств определителей нелишне помнить и такие:

где – транспонированная матрица A,

n – размер квадратной матрицы A,

– матрица перестановки строк или столбцов,

s, c=0,1,…, n – число выполненных перестановок строк и / или столбцов.

Если обратная матрица исходной системы уравнений определена, то, используя эквивалентные преобразования их векторно-матричной записи, решение уравнений можно представить в следующем виде:

Умножив вектор правых частей на обратную матрицу, получим вектор решения.

Классический способ вычисления обратной матрицы использует определители и осуществляется по формуле:

,

где – алгебраическое дополнение, а – минор матрицы A, получаемый вычислением определителя матрицы A, в которой вычеркнуты j-тая строка и i-тый столбец.

Такой способ вычисления определителя представляет в основном теоретический интерес, так как требует выполнения неоправданно большого числа операций.

Очень просто вычисляется определитель, если матрица диагональная или треугольная. В этом случае определитель равен произведению диагональных элементов. Кстати и решения уравнений, имеющих такие матрицы коэффициентов, получаются тривиально. Поэтому основные усилия разработчиков методов решения алгебраических уравнений направлены на поиск и обоснование эквивалентных преобразований матрицы с сохранением всех ее числовых характеристик, но имеющих в конце преобразований диагональную или треугольную форму.

5. Собственные значения и собственные векторы

Рассмотрим теоретические основы и методы, позволяющие выполнять эквивалентные матричные преобразования.

Найдем вектор, который под воздействием матрицы A изменяет только свою величину, но не направление. Для системы уравнений это означает, что вектор решения должен быть пропорционален с некоторым коэффициентом вектору правой части:

Страница:  1  2  3  4  5 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы