Линейное и нелинейное программирование

3.3 Задача многомерной оптимизации функции

3.3.1 Постановка задачи многомерной оптимизации функции

Минимизировать функцию, применяя следующие методы: нулевого порядка – Хука-Дживса, первого порядка – наискорейшего спуска (Коши), второго порядка – Нью

тона, и провести сравнительный анализ методов оптимизации по количеству итераций, необходимых для поиска экстремума при фиксированной точности и начальных координатах поиска X(0)=[-1,-1]T.

3.3.2 Метод Хука – Дживса

Итерация 1

1 Исследующий поиск

2 Поиск по образцу

Итерация 2

1 Исследующий поиск

2 Поиск по образцу

Итерация 3

1 Исследующий поиск

2 Поиск по образцу

Поиск завершен

3.3.3 Метод наискорейшего спуска (метод Коши)

Итерация 1. Счет итераций k = 0

Итерация 2. Счет итераций k = 1

Поиск завершен

3.3.4 Метод Ньютона

3.3.5 Сравнение результатов вычислений

Метод Хука-Дживса сходится за три итерации, при этом происходит вычисление значения функции в 13 точках, всего 38 вычислений. Метод наискорейшего спуска (метод Коши) сходится за одну итерацию, 9 вычислений. Метод Ньютона сходится за одну итерация, 9 вычислений. Методы Коши и Ньютона в данном случае сходятся за одну итерацию, поскольку функция представляет собой функцию для сферы (линии уровня – концентрические окружности) и направление, противоположное градиенту функции, направлено на точку минимума. Из этого можно сделать вывод, что в случае функций такого вида использование метода Хука-Дживса нерационально.

Заключение

Процесс проектирования информационных систем, реализующих новую информационную технологию, непрерывно совершенствуется. В центре внимания инженеров-системотехников оказываются все более сложные системы, что затрудняет использование физических моделей и повышает значимость математических моделей и машинного моделирования систем. Машинное моделирование стало эффективным инструментом исследования и проектирования сложных систем. Актуальность математических моделей непрерывно возрастает из-за их гибкости, адекватности реальным процессам, невысокой стоимости реализации на базе современных ПЭВМ. Все большие возможности предоставляются пользователю, т. е. специалисту по моделированию систем средствами вычислительной техники. Особенно эффективно применение моделирования на ранних этапах проектирования автоматизированных систем, когда цена ошибочных решений наиболее значительна.

Современные вычислительные средства позволили существенно увеличить сложность используемых моделей при изучении систем, появилась возможность построения комбинированных, аналитико-имитационных моделей, учитывающих все многообразие факторов, имеющих место в реальных системах, т. е. использованию моделей, более адекватных исследуемым явлениям.

Библиографический список

1 Лященко И.Н. Линейное и нелинейное программирования / И.Н.Лященко, Е.А.Карагодова, Н.В.Черникова, Н.З.Шор. – К.: «Высшая школа», 1975, 372 с.

2 Методические указания для выполнения курсового проекта по дисциплине «Прикладная математика» для студентов специальности «Компьютерные системы и сети» дневной и заочной форм обучения / Сост.: И.А.Балакирева, А.В.Скатков– Севастополь: Изд-во СевНТУ, 2003. – 15 с.

3 Методические указания по изучению дисциплины «Прикладная математика», раздел «Методы глобального поиска и одномерной минимизации» / Сост. А.В.Скатков, И.А.Балакирева, Л.А.Литвинова – Севастополь: Изд-во СевГТУ, 2000. – 31с.

4 Методические указания для изучения дисциплины «Прикладная математика» для студентов специальности «Компьютерные системы и сети» Раздел «Решение задач целочисленного линейного программирования» дневной и заочной форм обучения / Сост.: И.А.Балакирева, А.В.Скатков – Севастополь: Изд-во СевНТУ, 2000. – 13 с.

ПРИЛОЖЕНИЕ

А Текст программы глобальной многомерной оптимизации

{$APPTYPE CONSOLE}

program GlobalMinimize;

const

large = 10e99;

var

a1, a2, b1, b2 : real;

a1n, a2n, b1n, b2n : real;

fmin, x1, x2 : real;

alpha, dV, eps : real;

Rho, P : real;

fT, fS : real;

d1, d2, dx1, dx2 : real;

x1min, x2min : real;

i, N : integer;

t : boolean;

function f(x1, x2 : real) : real;

begin

f := 2*sqr(x1) + 2*x1*x2 + sqr(x2) - 2*x1 - 3*x2

end;

function ceil(x : real) : integer;

var a : integer;

begin

a := trunc(x);

if frac(x) > 0 then

a := a + 1;

ceil := a

end;

function max(a, b : real) : real;

begin

if a > b then

max := a

else

max := b

end;

function min(a, b : real) : real;

begin

if a < b then

min := a

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы