Нестандартные методы решения уравнений и неравенств
Функция f (x) называется убывающей на промежутке D, если для любых чисел x1 и x2 из промежутка D таких, что x1 < x2, выполняется неравенство f (x1) > f (x2).
На показанном на рисунке 1 графике
Рисунок 1
Функция y = f (x), , возрастает на каждом и
з промежутков [a; x1) и (x2; b] и убывает на промежутке (x1; x2). Обратите внимание, что функция возрастает на каждом из промежутков [a; x1) и (x2; b], но не на объединении промежутков
Если функция возрастает или убывает на некотором промежутке, то она называется монотонной на этом промежутке.
Заметим, что если f – монотонная функция на промежутке D (f (x)), то уравнение f (x) = const не может иметь более одного корня на этом промежутке.
Действительно, если x1 < x2 – корни этого уравнения на промежутке D (f(x)), то f (x1) = f (x2) = 0, что противоречит условию монотонности.
Перечислим свойства монотонных функций (предполагается, что все функции определены на некотором промежутке D).
· Сумма нескольких возрастающих функций является возрастающей функцией.
· Произведение неотрицательных возрастающих функций есть возрастающая функция.
· Если функция f возрастает, то функции cf (c > 0) и f + c также возрастают, а функция cf (c < 0) убывает. Здесь c – некоторая константа.
· Если функция f возрастает и сохраняет знак, то функция убывает.
· Если функция f возрастает и неотрицательна, то fn где nN, также возрастает.
· Если функция f возрастает и n – нечетное число, то f n также возрастает.
· Композиция g (f (x)) возрастающих функций f и g также возрастает.
Аналогичные утверждения можно сформулировать и для убывающей функции.
Точка a называется точкой максимума функции f, если существует такая ε-окрестность точки a, что для любого x из этой окрестности выполняется неравенство f (a) ≥ f (x).
Точка a называется точкой минимума функции f, если существует такая ε-окрестность точки a, что для любого x из этой окрестности выполняется неравенство f (a) ≤ f (x).
Точки, в которых достигается максимум или минимум функции, называются точками экстремума.
В точке экстремума происходит смена характера монотонности функции. Так, слева от точки экстремума функция может возрастать, а справа – убывать. Согласно определению, точка экстремума должна быть внутренней точкой области определения.
Если для любого (x ≠ a) выполняется неравенство f (x) ≤ f (a) , то точка a называется точкой наибольшего значения функции на множестве D:
Если для любого (x ≠ b) выполняется неравенство f (x) > f (b) , то точка b называется точкой наименьшего значения функции на множестве D.
Точка наибольшего или наименьшего значения функции на множестве D может быть экстремумом функции, но не обязательно им является.
Точку наибольшего (наименьшего) значения непрерывной на отрезке функции следует искать среди экстремумов этой функции и ее значений на концах отрезка.
Решение уравнений и неравенств с использованием свойства монотонности основывается на следующих утверждениях.
1. Пусть f(х) — непрерывная и строго монотонная функция на промежутке Т , тогда уравнение f(x) = С, где С — данная константа, может иметь не более одного решения на промежутке Т.
2. Пусть f(x) и g(х) — непрерывные на промежутке T функции, f(x) строго возрастает, а g(х) строго убывает на этом промежутке, тогда уравнение f(х) = =g(х) может иметь не более одного решения на промежутке Т. Отметим, что в качестве промежутка T могут быть бесконечный промежуток (-∞;+∞) , промежутки (а;+∞), (-∞; а), [а;+∞), (-∞; b], отрезки, интервалы и полуинтервалы.
Пример 2.1.1 Решите уравнение
. [28] (1)
Решение. Очевидно, что х ≤ 0 не может являться решением данного уравнения, так как тогда . Для х > 0 функция непрерывна и строго возрастает, как произведение двух непрерывных положительных строго возрастающих для этих х функций f(x) = х и . Значит, в области х > 0 функция принимает каждое свое значение ровно в одной точке. Легко видеть, что х = 1 является решением данного уравнения, следовательно, это его единственное решение.
Ответ: {1}.
Пример 2.1.2Решите неравенство
. (2)
Решение. Каждая из функций у = 2x, у = 3x, у = 4х непрерывная и строго возрастающая на всей оси. Значит, такой же является и исходная функция . Легко видеть, что при х = 0 функция принимает значение 3. В силу непрерывности и строгой монотонности этой функции при х > 0 имеем , при х < 0 имеем . Следовательно, решениями данного неравенства являются все х < 0.
Ответ: (-∞; 0).
Пример 2.1.3 Решите уравнение
. (3)
Решение. Область допустимых значений уравнения (3) есть промежуток . На ОДЗ функции и непрерывны и строго убывают, следовательно, непрерывна и убывает функция . Поэтому каждое свое значение функция h(x) принимает только в одной точке. Так как , то х = 2 является единственным корнем исходного уравнения.
Ответ: {2}.
2.2 Использование ограниченности функции
При решении уравнений и неравенств свойство ограниченности снизу или сверху функции на некотором множестве часто играет определяющую роль.
Если существует число C такое, что для любого выполняется неравенство f (x) ≤ C, то функция f называется ограниченной сверху на множестве D (рисунок 2).
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах