Нестандартные методы решения уравнений и неравенств
Так как корень является посторонним для уравнения (4), то отсюда получаем, что уравнение (4) имеет три корня: x1, x2, x3.
Ответ:
3.2 Угадывание корня уравнения
Иногда внешний вид уравнения подсказывает, какое число является корнем уравнения
.
Пример 3.2.1 Решите уравнение
. (8)
Решение. Перепишем уравнение (8) в виде:
. (9)
Из внешнего вида этого уравнения очевидно, что х = 12 есть его корень. Для нахождения остальных корней преобразуем многочлен
Так как многочлен не имеет корней, то исходное уравнение имеет единственный корень х = 12.
Ответ: {12}.
Пример 3.2.2. Решите уравнение
(10)
Решение. Легко заметить, что и являются решениями этого уравнения. После раскрытия скобок это уравнение перепишется как квадратное. А это означает, что оно может иметь не более двух корней. Так как два корня этого уравнения найдены, то тем самым оно и решено.
Ответ:
3.3 Использование симметричности уравнения
Иногда внешний вид уравнения — некоторая его симметричность — подсказывает способ решения уравнения.
Пример 3.3.1Решите уравнение
. (11)
Решение. Очевидно, что внешний вид уравнения подсказывает, что один из корней уравнения (11) есть . Однако найти остальные корни этого уравнения здесь не так просто. Перепишем уравнение (11) в несколько ином виде.
Поскольку справедливы тождественные равенства
,
то уравнение (11) можно переписать так:
. (12)
Теперь очевидно, что если ― корень уравнения (12), то также корень уравнения (12), поскольку
. (13)
Покажем, что если , есть корень уравнения (11), то также есть корень этого уравнения.
Действительно, так как
то отсюда и вытекает это утверждение.
Итак, если , ― корень уравнения (11), то оно имеет еще корни
, , , ,
т. е. уравнение (11) имеет корни
, , , , , .
Поскольку уравнение (11) есть алгебраическое уравнение шестой степени, то оно имеет не более шести корней. Таким образом, мы нашли все корни уравнения (11).
Ответ:
3.4 Исследование уравнения на промежутках действительной оси
Иногда решения уравнения можно найти, исследуя его на разных числовых промежутках.
Пример 3.4.1 Решите уравнение
. (14)
Решение. Перепишем уравнение в виде или, используя формулу разности
, (15)
в виде
. (16)
Отсюда видно, что один из корней данного уравнения есть . Докажем, что уравнение
(17)
решений не имеет.
Разобьем числовую ось на промежутки
Для любого x из промежутка имеем, что левая часть уравнения (17) положительна, поэтому на этом промежутке уравнение решений не имеет.
Поскольку
,
то для любого х из промежутка этот многочлен положителен. Это означает, что на промежутке уравнение (17) также не имеет решений.
Поскольку
,
то для любого x из промежутка этот многочлен положителен. Следовательно, и на промежутке уравнение (17) не имеет решений.
Итак, данное уравнение (17) имеет единственное решение .
Ответ: {1}.
ЗАКЛЮЧЕНИЕ
В процессе исследования цель курсовой работы достигнута, полностью решены поставленные задачи и получены следующие результаты и выводы:
1. Приведены сведения о давности постановки перед человеком задачи решения уравнений и неравенств.
2. Приведены и рассмотрены на примере методы решения уравнений и неравенств, основанные на использовании свойств функции.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах