Нестандартные методы решения задач по математике
Ответ: , .
3. Методы, основанные на применении численных неравенств
Нестандартными методами в математике являются также методы, в основу которых положено использование известных в математике численных неравенств (Коши,
Бернулли и Коши--Буняковского), изучению которых в общеобразовательной школе не уделяется или почти не уделяется никакого внимания. Однако многие математические задачи (особенно задачи повышенной сложности) эффективно решаются именно такими методами. В этой связи незнание последних может существенно ограничить круг успешно решаемых задач.
Первоначально приведем формулировки неравенства Коши, неравенства Бернулли и неравенства Коши--Буняковского, а затем проиллюстрируем их применение на примерах, взятых из программы вступительных экзаменов по письменной математике в Белгосуниверситете.
Неравенство Коши
Пусть , , ., , тогда
где . Причем неравенство превращается в равенство тогда и только тогда, когда . В частности, если в положить , то
Это неравенство чаще всего встречается при решении школьных задач по математике. Если в положить и , где , то
Здесь неравенство равносильно равенству лишь при .
Следует отметить, что имеется аналог неравенства для отрицательных значений , а именно, если , то
Данное неравенство превращается в равенство при .
Неравенство Бернулли
Наиболее распространенным является классическое неравенство Бернулли, которое формулируется в следующей форме: если , то для любого натурального имеет место
Причем равенство в достигается при или .
Наряду с существует обобщенное неравенство Бернулли, которое содержит в себе два неравенства:
если или , то
если , то
где .
Следует отметить, что равенства в и имеют место только при . Верно также и обратное утверждение.
Неравенство Коши--Буняковского
Для произвольных и имеет место
где .
Причем равенство в достигается в том и только в том случае, когда числа . и пропорциональны, т.е. существует константа такая, что для всех выполняется равенство .
На основе использования неравенства Коши--Буняковского можно доказать неравенство
которое справедливо для произвольных , и натурального числа .
Задачи и решения
Пример 11 Доказать неравенство
где .
Доказательство. Преобразуем левую часть неравенства с использованием неравенства , т.е.
Так как по условию , то равенства в неравенстве Бернулли не будет, поэтому доказано строгое неравенство .
Пример 12 Доказать, что если , то
Доказательство. Введем обозначения и . Тогда и .
Используя неравенство Коши-Буняковского , можно записать . Так как , то и .
Имеет место равенство , из которого следует .
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах