Несобственные интегралы

Следовательно, вычисление несобственного интеграла от разрывной функции связано с нахождением предела:

.

Так же как и в предыдущем параграфе, если этот предел существует, то интеграл называется сходящимся, если не существует или равен бесконечности, то – расходящимся.

С геометрической точки зрения несобственный интеграл

от разрывной функции равен площади криволинейной трапеции, у которой в какой-то точке высота равна бесконечности.

Если функция терпит разрыв в точке , то

.

Если же разрыв происходит в точке , то есть внутри , то в этом случае

.

В последнем случае несобственный интеграл существует (или сходится), если сходятся оба интеграла.

Так же как и несобственный интеграл с бесконечными пределами, данный интеграл тоже не является пределом -ой интегральной суммы, а пределом определенного интеграла.

Как и в предыдущем параграфе, рассмотрим пример, используемый при решении других задач.

Если в этом интеграле , то и поэтому . Следовательно, в этом случае .

Если , то. В этом случае и интеграл расходится. Аналогичный результат получается и в том случае, когда . Действительно,

.

Таким образом, рассмотренный интеграл расходится при и сходится при .

3. Признаки сходимости несобственных интегралов

Как было показано, несобственные интегралы сходятся не всегда. Следовательно, если их вычисление громоздко, то желательно заранее выяснить их существование. Кроме того, бывают случаи, когда несобственный интеграл вообще нет необходимости вычислять, а требуется лишь знать, сходится он или нет. В этом случае используются теоремы о сходимости несобственных интегралов, основанные на сравнении исследуемого несобственного интеграла с известными.

Теорема 1. Пусть функции и непрерывны на промежутке и удовлетворяют неравенствам . Тогда,

1) если интеграл сходится, то сходится и интеграл ;

2) если интеграл расходится, то расходится и интеграл .

Доказываем первую часть. Из неравенств , основываясь на свойствах неопределенных интегралов (свойство 5, п. 2), следует, что

,

где . При увеличении верхнего предела интегрирования значения обоих интегралов будут непрерывно расти, так как подынтегральные функции по условию теоремы положительны. Следовательно, величины обоих интегралов будут функциями верхних пределов интегрирования. Перейдем к пределу в неравенствах, когда . Согласно свойству 6 (п. 3.5) неравенства при этом не нарушатся:

.

По условию теоремы сходится, то есть . У интеграла величина будет монотонно расти с ростом . Однако эта монотонно возрастающая последовательность ограничена сверху числом . Следовательно, , то есть несобственный интеграл сходится.

Во втором случае также из следует, что . Но в этом случае по условию расходится, то есть . Тогда и , то есть несобственный интеграл расходится. Теорема доказана.

Для несобственных интегралов от разрывных функций существует аналогичная теорема.

Теорема 2. Пусть функции и непрерывны на промежутке , удовлетворяют неравенствам и в точке одновременно терпят разрыв второго рода. Тогда,

1) если сходится, то сходится также;

2) если расходится, то расходится и .

Доказательство теоремы 2 проводится абсолютно так же, как и теоремы 1. Ниже соответствующие теоремы сходимости для несобственных интегралов от разрывных функций формулироваться не будут.

Теорема 3. Если на промежутке функция меняет свой знак, то если сходится, то сходится и , при этом второй интеграл называется абсолютно сходящимся.

Страница:  1  2  3 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы