Непрерывность функции на интервале и на отрезке
а с другой стороны, вследствие непрерывности функции ,
Значит, , так что точка принадлежит множеству и .
В случае, когда множество задано неравенством , мы имеем при всех и по теореме о переходе к пределу в неравенстве получаем
откуда , что означает, что и . Точно так же в случае неравенства переход к пределу в неравенстве даёт
откуда , и .
Теорема 3.8 (об ограниченности непрерывной функции) Пусть функция непрерывна на отрезке . Тогда ограничена на , то есть существует такая постоянная , что при всех .
Рис.3.23. Непрерывная на отрезке функция ограничена
Доказательство. Предположим обратное: пусть не ограничена, например, сверху. Тогда все множества , , , не пусты. По предыдущей лемме в каждом из этих множеств имеется наименьшее значение , . Покажем, что
Действительно, . Если какая-либо точка из , например , лежит между и , то
то есть - промежуточное значение между и . Значит, по теореме о промежуточном значении непрерывной функции, существует точка , такая что , и . Но , вопреки предположению о том, что - наименьшее значение из множества . Отсюда следует, что при всех .
Точно так же далее доказывается, что при всех , при всех , ит.д. Итак, - возрастающая последовательность, ограниченная сверху числом . Поэтому существует . Из непрерывности функции следует, что существует , но при , так что предела не существует. Полученное противоречие доказывает, что функция ограничена сверху.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах