Структура и качество оптического изображения
или, после переобозначения :
. (10)
Двойной интеграл в выражении (9.10) – это некоторая функция , зависящая от пространственных частот.
Обозначим , и запишем распределение интенсивности на изображении гармонического объекта в следующем виде:
. (11)
Как показывают соотношения (8) и (11), изображение от предмета отличается только комплексной амплитудой, то есть изображение гармонической решетки любой оптической системы есть гармоническая решетка с той же частотой. Поэтому гармоническую решетку удобно использовать для исследования и оценки передачи структуры изображения. Изменение комплексной амплитуды гармонической решетки – это и есть действие оптической системы.
Оптическая передаточная функция (ОПФ)
Оптическая передаточная функция (optical transfer function, OTF) характеризует передачу структуры предмета оптической системой как функция пространственных частот:
. (12)
ОПФ связана с ФРТ интегральным преобразованием – преобразованием Фурье:
(13)
или
или ,
где F – обозначение Фурье преобразования:
. (14)
ФРТ показывает, как оптическая система изображает точку, а ОПФ показывает, как оптическая система изображает гармоническую решетку, то есть как меняется комплексная амплитуда решетки в зависимости от частоты.
Оптическая передаточная функция – это комплексная функция:
. (15)
Модуль ОПФ называется модуляционной передаточной функцией (МПФ) или частотно-контрастной характеристикой (ЧКХ). Аргумент (фаза) ОПФ называется фазовой передаточной функцией (ФПФ) или частотно-фазовой характеристикой (ЧФК).
Частотно-контрастная характеристика показывает передачу вещественной амплитуды гармонического объекта:
, (16)
где a – амплитуда на предмете, a¢ – амплитуда на изображении.
Амплитуда изображения гармонического объекта тесно связана с контрастом. Контраст для периодических (гармонических) изображений (рис.9.4) определяется выражением:
. (17)
Рисунок 4 - Контраст гармонического объекта.
. Абсолютный контраст получается, когда (рис.5.а). Контраст в изображении нулевой , когда – изображение практически отсутствует (рис.5.б).
Рисунок 5 - Абсолютный и нулевой контраст гармонического объекта
Чем больше контраст, тем лучше различаются мелкие детали изображения. Изображение нельзя зарегистрировать или увидеть в случае, если:
, (18)
где – порог контраста, зависящий от приемника изображения (например, для глаза ).
Контраст для изображения гармонического объекта может быть выражен через постоянную a¢0 и a¢ переменную составляющие изображения гармонического объекта (рис.6):
. (19)
Рисунок 6 - Постоянная и переменная составляющие изображения гармонического объекта
Если , то ЧКХ, как следует из выражения (16) будет определяться следующим соотношением:
, (20)
где k¢ – контраст изображения, k – контраст предмета.
Частотно-контрастная характеристика показывает зависимость контраста изображения гармонической решетки от частоты решетки, если считать, что на предмете контраст единичный (рис.7). Для идеальной оптической системы ЧКХ – прямая, параллельная оси.
Рисунок 7 - Частотно-контрастная характеристика.
Для ближнего типа предмета или изображения пространственная частота n измеряется в [лин/мм]. Для дальнего типа пространственная частота измеряется в [лин/рад].
Итак, передача структуры изображения описывается ФРТ или ОПФ, которые связаны через взаимно однозначные преобразования Фурье. Наглядно отобразить двумерную функцию ОПФ можно в виде:
- графиков сечений или ,
- изометрического изображения “поверхности” ,
- карты уровней .
Схема формирования оптического изображения
Существует два фактора, которые влияют на структуру и качество изображения в оптической системе: дифракция и аберрации. Эти факторы действуют совместно. Если аберрации малы и преобладает дифракция, то такие системы называются дифракционно-ограниченными. Если аберрации велики, и дифракция теряется на фоне аберраций, то такие системы называются геометрически-ограниченными (формирование изображения вполне корректно описывается с позиций геометрической оптики, без привлечения теории дифракции).
Рисунок 8 - Схема формирования оптического изображения.
Рассмотрим формирование изображения некоторой точки (рис.8). Гомоцентрический пучок лучей выходит из точки A0, и после идеальной оптической системы сходится в точке A¢0. Наряду с пучками лучей можно также рассматривать сферические волновые фронты Sw и S¢w. Действие реальной оптической системы сводится к следующим факторам:
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
- Биография В.А. Котельникова и его изобретения
- Проектирование гибридных интегральных микросхем и расчет элементов узлов детектора СВЧ-сигналов
- Расчет и конструирование АМ передатчика
- История развития фотографии и фототехники
- Порядок установки и корректировки МПИ эталонов. Поверка электронных аналоговых и цифровых вольтметров и амперметров
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем