Электронные компоненты

Средняя наработка на отказ - этот показатель относится к восстанавливаемым объектам, при эксплуатации которых допускаются многократно повторяющиеся отказы. Эксплуатация таких объектов может быть описана следующим образом: в начальный момент времени объект начинает работу и продолжает работу до первого отказа; после отказа происходит восстановление работоспособности, и объект вновь работает до о

тказа и т.д. На оси времени моменты отказов образуют поток отказов, а моменты восстановлений - поток восстановлений.

Средняя наработка на отказ объекта (наработка на отказ) определяется как отношение суммарной наработки восстанавливаемого объекта к числу отказов, происшедших за суммарную наработку:

, (1.13)

где ti - наработка между i-1 и i-м отказами, ч; n (t) - суммарное число отказов за время t.

2. Туннельный пробой в электронных компонентах. Методы определения

Рассмотрим зонную диаграмму диода с p-n переходом при обратном смещении при условии, что области эмиттера и базы диода легированы достаточно сильно (рис.2.1).

Рисунок 2.1 - Зонная диаграмма диода на базе сильнолегированного p-n перехода при обратном смещении.

Квантово-механическое рассмотрение туннельных переходов для электронов показывает, что в том случае, когда геометрическая ширина потенциального барьера сравнима с дебройлевской длиной волны электрона, возможны туннельные переходы электронов между заполненными и свободными состояниями, отделенными потенциальным барьером.

Форма потенциального барьера обусловлена полем p-n перехода. На рисунке 2.2 схематически изображен волновой пакет при туннелировании через потенциальный барьер треугольной формы.

Рисунок 2.2 - Схематическое изображение туннелирования волнового пакета через потенциальный барьер.

Возьмем уравнение Шредингера Hψ = Eψ, где H - гамильтониан для свободного электрона

,

Е - энергия электрона. Введем

Тогда снаружи от потенциального барьера уравнение Шредингера будет иметь вид:

Внутри потенциального барьера

.

Решение для волновых функций электрона будем искать в следующем виде:

Используем условие непрерывности для волновой функции и ее производные ψ, dψ/dx на границах потенциального барьера, а также предположение об узком и глубоком потенциальном барьере (βW >> 1).

В этом случае для вероятности туннельного перехода Т получаем:

Выражение для туннельного тока электронов из зоны проводимости на свободные места в валентной зоне будет описываться следующим соотношением:

где использованы стандартные обозначения для функции распределения и плотности квантовых состояний.

При равновесных условиях на p+-n+ переходе токи слева и справа друг друга уравновешивают: IC→V = IV→C.

При подаче напряжения туннельные токи слева и справа друг друга уже не уравновешивают:

Здесь fC, fV - неравновесные функции распределения для электронов в зоне проводимости и валентной зоне.

Для барьера треугольной формы получено аналитическое выражение для зависимости туннельного тока Jтун от напряженности электрического поля Е следующего вида:

За напряженность электрического поля пробоя Eпр условно принимают такое значение поля Е, когда происходит десятикратное возрастание обратного тока стабилитрона: Iтун = 10·I0.

При этом для p-n переходов из различных полупроводников величина электрического поля пробоя Eпр составляет значения: кремний Si: Eпр = 4·105 В/см; германий Ge: Eпр = 2·105 В/см. Туннельный пробой в полупроводниках называют также зинеровским пробоем.

Оценим напряжение Uz, при котором происходит туннельный пробой. Будем считать, что величина поля пробоя Eпр определяется средним значением электрического поля в p-n переходе Eпр = Uобр/W. Поскольку ширина области пространственного заряда W зависит от напряжения по закону

,

то, приравнивая значения W из выражений

,

получаем, что напряжение туннельного пробоя будет определяться следующим соотношением:

Рассмотрим, как зависит напряжение туннельного пробоя от удельного сопротивления базы стабилитрона. Поскольку легирующая концентрация в базе ND связана с удельным сопротивлением ρбазы соотношением ND = 1/ρμe, получаем:

Из уравнения (4.21) следует, что напряжение туннельного пробоя Uz возрастает с ростом сопротивления базы ρбазы.

Эмпирические зависимости напряжения туннельного пробоя Uz для различных полупроводников имеют следующий вид:

германий (Ge): Uz = 100ρn + 50ρp;

кремний (Si): Uz = 40ρn + 8ρp,

где n, p - удельные сопротивления n - и p-слоев, выраженные в (Ом·см).

3. Надежность металлизации и контактов интегральных схем. Характеристика и параметры надежности

Осаждение тонких металлических пленок для создания законченной структуры интегральной схемы с соединениями требует решения многих сложных проблем. В большинстве случаев металлизация осуществляется с применением процесса фотолитографии, т.е. на фоторезисте создается рисунок соединения, определяющий участки, с которых металл должен быть удален и в которых должен быть оставлен. Последовательность нанесения слоя фоторезиста и металла может быть изменена.

Разрыв металлической пленки. Обычно на слое фоторезиста создают требуемый рисунок соединений и затем на всю поверхность пластины осаждают пленку металла, удаляемую с участков, на которых имеется фоторезист, совместно с последним. Если пленка металла относительно толстая и непрерывна по всей поверхности пластины, в ней могут возникнуть разрывы и зазубрины на краях, как показано на рис.3.1 Это само по себе не выдвигает новых проблем, если отдельные частицы металла остаются на пластине.

Страница:  1  2  3  4  5 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы