Электронные компоненты
Для ИМС прежде всего характерны внезапные отказы, обусловленные качеством изготовления (технологическими дефектами): разрывы соединений между контактной зоной на поверхности подложки (кристалла) и выводами корпуса, обрывы и короткие замыкания внутренних соединений. Внезапные отказы полупроводниковых ИМС составляют 80% от общего числа отказов. Свыше 50% отказов гибридных линейных ИМС связано с д
ефектами встроенных транзисторов и паяных соединений. Отказы контактов золотых проволочных выводов чаще всего происходят из-за обрыва проволочки около шарика ковары.
Наиболее слабым звеном полупроводниковых ИМС в пластмассовых корпусах являются внутренние проволочные соединения, дающие обрывы и короткие замыкания (более 90% отказов вызвано обрывами соединительных проводов).
Основная причина таких отказов определяется различием температурных коэффициентов линейного расширения металла и обволакивающего материала, что приводит к возникновению термомеханических напряжений. Около 10% отказов полупроводниковых ИМС в пластмассовых корпусах происходит по причине электрической коррозии алюминиевой металлизации из-за недостаточной влагостойкости пластмасс и загрязнения поверхности окисла при герметизации. Типичны для таких ИМС и отказы из-за образования шунтирующих утечек и коротких замыканий, так как влага вызывает перенос ионов металла и загрязнений, а также образование проводящих мостиков между разнопотенциальными точками схемы.
Более надежными являются ИМС с керамическими корпусами.
У полупроводниковых приборов - диодов, транзисторов, тиристоров, микросхем постепенные и внезапные отказы возникают чаще, чем другие виды отказов. Наиболее характерным изменением параметров полупроводниковых приборов, приводящим к постепенным отказам, является увеличение обратного тока диодов и неуправляемых обратных токов коллекторных переходов транзисторов и тиристоров. Внезапные отказы являются следствием ошибок в конструкции полупроводниковых приборов и нарушения технологии их изготовления. На основе данных о работе полупроводниковых приборов в различных схемах можно считать, что около 80% их отказов являются постепенными. В справочной литературе, достаточно широко учтены влияющие факторы на работоспособность полупроводниковых приборов в виде поправочных коэффициентов, определяемых по таблицам или номограммам.
Вывод
Проблема обеспечения надежности электронных компонентов включает в себя множество этапов: от создания элементов и аппаратуры, до ее практического использования. Поэтому все факторы, влияющие на надежность РЭА, условно принято рассматривать применительно к трем этапам.
При проектировании учитывают следующие факторы:
качество и количество применяемых элементов и деталей;
режимы работы элементов и деталей;
стандартизация и унификация;
доступность деталей узлов и блоков для осмотра и ремонта.
К производственные факторы, отрицательно влияющие на надежность:
отсутствие качественного контроля материалов и комплектующих изделий, поступающих от смежных предприятий;
нарушение сортности и недоброкачественная замена материала при изготовлении деталей;
установка в приборах элементов, подвергающихся длительному хранению в неблагоприятных условиях, без предварительной проверки;
недостаточное внимание к чистоте оборудования, рабочего места, воздуха и т.д. (что особенно важно в производстве микросхем и сборке точных элементов и устройств);
неполный контроль за ходом операций и при выпуске готовой продукции;
нарушение режима сложных технических процессов.
К эксплуатационные факторы, влияющие на надежность, следующие:
квалификация обслуживающего и ремонтного персонала;
воздействие на приборы и механизмы внешних условий (климатических; механических и т.п.) и факторы времени.
Перечень литературы
1. Горлов М.И., Королев С.Ю. Физические основы надежности интегральных микросхем. - Воронеж: ВГУ, 1995. - 200с.
2. Ефимов И.Е., Козырь И.Я., Горбунов Ю.И. Микроэлектроника. Физические и технологические основы, надежность. - М.: Высшая школа, 1986.
3. Фомин А.В., Боченков Ю.И., Сорокопуд В.А. Технология, надежность и автоматизация производства БГИС и микросборок / Под ред. А.В. Фомина. - М.: Радио и связь, 1981.
4. Чернышев А.А. Основы надежности полупроводниковых приборов и интегральных микросхем. - М.: Радио и связь, 1988. - 256с.
5. Докучаев И.И., Козырь И.Я., Онопко Д.И. Испытания и измерения интегральных микросхем. - М.: Изд. МИЭТ, 1978.
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем