Электронные компоненты

, откуда

. (1.5)

По известным статистическим данным можно записать:

,

где N (t1), N (t2) - число объектов, работоспособных соответственно к моментам времени t1

и t2:

.

Отметим, что не всегда в качестве наработки выступает время (в часах, годах). К примеру, для оценки вероятности безотказной работы коммутационных аппаратов с большим количеством переключений (вакуумный выключатель) в качестве переменной величины наработки целесообразно брать количество циклов "включить" - "выключить". При оценке надежности скользящих контактов удобнее в качестве наработки брать количество проходов токоприемника по этому контакту, а при оценке надежности движущихся объектов наработку целесообразно брать в километрах пробега. Суть математических выражений оценки P (t), Q (t), f (t) при этом остается неизменной.

Средней наработкой до отказа называется математическое ожидание наработки объекта до первого отказа T1.

Вероятностное определение средней наработки до отказа [13] выражается так:

Используя известную связь между f (t), Q (t) и P (t), запишем, а зная, что

,

получим:

+

.

Полагая, что

и учитывая, что Р (о) = 1, получаем:

. (1.6)

Таким образом, средняя наработка до отказа равна площади, образованной кривой вероятности безотказной работы P (t) и осями координат. Статистическая оценка для средней наработки до отказа определяется по формуле

, ч. (1.7)

где No - число работоспособных однотипных невосстанавливаемых объектов при t = 0 (в начале испытания); tj - наработка до отказа j-го объекта.

Отметим, что как и в случае с определением P (t) средняя наработка до отказа может оцениваться не только в часах (годах), но и в циклах, километрах пробега и другими аргументами.

Интенсивность отказов - это условная плотность вероятности возникновения отказа объекта, определяемая при условии, что до рассматриваемого момента времени отказ не наступил. Из вероятностного определения следует, что

. (1.8)

Статистическая оценка интенсивности отказов имеет вид:

, (1.9)

где - число отказов однотипных объектов на интервале , для которого определяется ; - число работоспособных объектов в середине интервала (см. рис. 2.2).

,

r2.gif (1885 bytes)

где Ni - число работоспособных объектов в начале интервала ;

- число работоспособных объектов в конце интервала .

Если интервал уменьшается до нулевого значения (), то

, (1.10)

где Nо - количество объектов, поставленных на испытания; - интервал, продолжающий время t; - количество отказов на интервале .

Умножив и поделив в формуле (2.10) правую часть на Nо и перейдя к предельно малому значению  t, вместо выражения (2.9), получим

Где а

Следовательно,

,

что и записано в вероятностном определении  (t), см. выражение (1.8).

Решение выражения (1.8) дает:

или . (1.11)

Выражение (1.11) показывает связь  (t) и P (t). Из этой связи ясно видно, что по аналитически заданной функции  (t) легко определить P (t) и Т1:

. (1.12)

Если при статистической оценке время эксперимента разбить на достаточно большое количество одинаковых интервалов  t за длительный срок, то результатом обработки опытных данных будет график, изображенный на рис.2.3.

r3.gif (6923 bytes)

Как показывают многочисленные данные анализа надежности большинства объектов техники, в том числе и электроустановок, линеаризованная обобщенная зависимость  (t) представляет собой сложную кривую с тремя характерными интервалами (I, II, III). На интервале II (t2 - t1)  = const. Этот интервал может составлять более 10 лет [8], он связан с нормальной эксплуатацией объектов. Интервал I (t1 - 0) часто называют периодом приработки элементов. Он может увеличиваться или уменьшаться в зависимости от уровня организации отбраковки элементов на заводе-изготовителе, где элементы с внутренними дефектами своевременно изымаются из партии выпускаемой продукции. Величина интенсивности отказов на этом интервале во многом зависит от качества сборки схем сложных устройств, соблюдения требований монтажа и т.п. Включение под нагрузку собранных схем приводит к быстрому "выжиганию" дефектных элементов и по истечении некоторого времени t1 в схеме остаются только исправные элементы, и их эксплуатация связана с  = const. На интервале III (t > t2) по причинам, обусловленным естественными процессами старения, изнашивания, коррозии и т.д., интенсивность отказов резко возрастает, увеличивается число деградационных отказов. Для того, чтобы обеспечить  = const необходимо заменить неремонтируемые элементы на исправные новые или работоспособные, отработавшие время t  t2. Интервал  = const cоответствует экспоненциальной модели распределения вероятности безотказной работы. Эта модель подробно проанализирована в подразделе 3.2 Здесь же отметим, что при  = const значительно упрощается расчет надежности и  наиболее часто используется как исходный показатель надежности элемента.

Страница:  1  2  3  4  5 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы