Моделирование голограммы, получаемой с помощью подповерхностного сканирующего радиолокатора

Как видно на рис. 3, голограмма, полученная с помощью радиолокатора, имеет небольшое количество осцилляций из-за того, что апертурная антенна радиолокатора является направленной. Отметив, что эффективный размер области, в которой сосредоточено отраженное от точечного источника поля имеет размер, сопоставимый с размером самой антенны, диаметр которой равен примерно 10 см, можно сделать вывод о

том, что для восстановления изображения источника такая антенна не даст хорошей фокусировки изображения. Данное обстоятельство объясняется тем, что размер получаемой голограммы ограничивает дифракционный предел синтезированной апертуры. Таким образом, для такого типа радиолокаторов необходимо использовать ненаправленные антенны при зондировании малозаглубленных предметов, что привело бы к тому, что полученная голограмма имела бы значительно больший размер.

В следующем параграфе рассмотрена возможность восстановления распределения источников по регистрируемой голограмме методом восстановления волнового фронта.

Восстановление голограммы

Пусть распределение комплексной амплитуды поля в плоскости (рис. 1), тогда комплексную амплитуду выходного сигнала антенны можно выразить по формуле

,

где весовая функция является характеристикой антенны радиолокатора. Выражение является интегральным уравнением свертки относительно неизвестного распределения комплексной амплитуды поля . Применяя интегральное преобразование Фурье к обеим частям уравнения , можно выписать формальное решение в следующем виде

,

где , – прямое и обратное преобразование Фурье соответственно.

В выражении обратное преобразование Фурье отношения может и не существовать в силу того, что может иметь нули, а может иметь высокочастотные гармоники, обусловленные, например, шумом.

Уравнение должно быть регуляризовано введением в оператор обращения дополнительного множителя, позволяющего построить приближенное решение.

Методика решения уравнения свертки введением регуляризирующего множителя, согласованного с погрешностями задания левой части хорошо известна [11]. Поэтому далее с целью упрощения задачи будем считать, что распределение комплексной амплитуды поля, создаваемое источниками, находящимися в нижнем полупространстве, известно. Последнее утверждение эквивалентно использованию точечной антенны вместо апертурной (рис. 1).

Рассмотрим алгоритм получения изображения точечного источника, находящегося на некоторой глубине в однородной среде, характеризуемой комплексным волновым вектором k, как изображено на рис. 4. Положение точечного рассеивателя в нижнем пространстве задается вектором , текущее положение точечного приемопередатчика задается вектором . Комплексная амплитуда поля, регистрируемая приемной антенной на поверхности раздела, задаваемой , представим в виде

,

где комплексный коэффициент характеризует отражательные свойства точечного источника, – комплексная амплитуда возбуждения передатчика. Дополнительный множитель 2 в показателе экспоненте и квадрат разности векторов в знаменателе возникают в предположении того, что точечный источник отражает волну, приходящую от точечного облучателя.

Рис. 4. Расположение точечных приемопередатчика и отражателя.

В результате перемещения антенны по плоскости раздела может быть получено двумерное распределение комплексной амплитуды .

Приведенный пример записи распределения комплексной амплитуды допускает аналогию с записью оптической голограммы с тем лишь отличием, что при записи голограммы в оптике источник, освещающий предмет, как правило, является неподвижным. В данном случае, при записи распределения комплексной амплитуды передатчик перемещается вместе с антенной, что приводит к появлению коэффициента 2 в выражении .

Если бы мы имели дело со случаем, когда точечный источник, находящийся в нижнем полупространстве, излучал бы самостоятельно, то двумерное распределение комплексной амплитуды задавалось бы соотношением

,

в котором комплексный коэффициент задает фазу и амплитуду возбуждения. В таком случае восстановление изображения заключалось бы в том, что нужно было бы взять распределение , комплексно сопряженное , и рассчитать комплексную амплитуду поля, которая создается распределением в нижнем полупространстве. Очевидно, что это распределение фокусируется как раз в месте расположения точечного источника.

Распределение, задаваемое , тоже может быть «сфокусировано» в действительном месте расположения точечного источника. Для этого заметим, что распределение, задаваемое будет иметь фокус в месте расположения источника, если данное распределение создается волной, характеризуемой волновым вектором . В оптике это соответствовало бы восстановлению голограммы опорной волной с вдвое меньшей длиной волны.

Для того чтобы найти распределение комплексной амплитуды в нижнем полупространстве на глубине , воспользуемся спектральным методом. Спектр плоских волн распределения комплексной амплитуды представляется в виде

.

Спектр плоских волн , пройдя слой пространства толщиной в противоположном направлении оси преобразуется по известному соотношению

,

где использование вдвое большего волнового числа объяснялось выше.

Распределение комплексной амплитуды, соответствующее спектру, получается с помощью обратного преобразования Фурье

Страница:  1  2  3  4  5 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы