Математическое обеспечение схемотехнического проектирования
Математическое обеспечение схемотехнического проектирования пригнано обеспечить проведение анализа электрических характеристик ИС с целью проверки их соответствия указанным в техническом задании величинам. Анализ электрических характеристик сводится к расчету токов в цепях и потенциалов в узлах схемы при заданных условиях ее функционирования. Основу математического обеспечения схемотехническо
го проектирования составляет математическое моделирование электрических характеристик элементов схемы, определяющих ее англизируемые характеристики.
В программах схемотехнического проектирования используются так называемые электрические модели элементов. В основе этих моделей лежат эквивалентные схемы, описывающие возможные цепи протекания тока в элементах, а также характеристики этих цепей. Характеристики цепей определяются электрическими параметрами элементов эквивалентной схемы, стоящими в цепи. Электрические параметры (характеристики) элементов эквивалентной схемы (проводимости, сопротивления, емкости) могут зависеть от напряжений на электродах моделируемых элементов (диодов, транзисторов). Зависимости характеристик элементов эквивалентной схемы от напряжений на электродах моделируемых элементов описываются математическими электрическими моделями последних.
Ниже будут описаны электрические модели элементов ИС, реализованные в программе PSPJCE. При описании моделей используются обозначения параметров, принятые в этой программе. Дм обозначения выводов элементов, а также в индексах при параметрах моделей используются буквы английского алфавита, взятые из соответствующих терминов, указываемых в скобках по тексту на английском языке.
Модель диода
Модель диода, реализованная в программе PSPICE, применима для моделирования диодов на основе р-п-перехода и перехода металл-полупроводник (диод Шоттки).
Модель описывает статические и динамические характеристики и режимы большого и малого сигналов при прямом и обратном включении диода. Моделируются шумовые характеристики, а также температурные зависимости параметров модели.
Эквивалентная схема, моделирующая диод в режиме постоянного тока, приведена на рис 1. Элементы данной схемы моделируют следующие характеристики диода:
Рис. I. Эквивалентная схема диода
Рис. 2. ВАХ диода в линейном (а) и полулогарифмическом масштабе
-генератор тока, управляемый напряжением, ID – статические характеристики (вольт-амперную характеристику р-п-перехода диода);
-элемент накопления заряда Qd - накопление заряда вблизи р-п-перехода и областях анода и катода диода;
-постоянный резистор RD омическое сопротивление областей анода и катода диода.
Вольт-амперная характеристика (ВАХ) генератора ID при прямом и обратном включениях р-п-перехода (рис.2,а) описывается выражением
|
(1) |
Где IN – нормальный (normal) ток диода, обусловленный диффузией (инжекцией) носителей заряда в прямом включении;
IB – ток диода, обусловленный лавинным размножением носителей заряда при зенеровском пробое (breakdown) р-п - перехода в обратном включении.
В свою очередь эти токи описываются выражениями, основанными на экспоненциальной аппроксимации зависимости концентрации носителей заряда от напряжения, приложенного к р-п - переходу (соотношение Больцмана):
|
(2) |
Где IS – начальное значение тока диода;
VD – падение напряжения на р-п-переходе, не включающее падение напряжения на резисторе RD;
N – коэффициент эмиссии (неидеальности) р-п-перехода;
φT – температурный потенциал;
|
(3) |
Где VB – напряжение пробоя р-п-перехода а обратном включении (см. рис.2а), которое нужно задавать по абсолютной величине;
Ibv- ток при напряжении VB (см. рис.2а).
Введение в выражение (2) единицы со знаком минус упрощает схемотехнический анализ, так как в этом случае при напряжении VD=0 ток IN =0. Однако реально при напряжении VD=0 через р-п - переход течет ток, обусловленный тепловым движением носителей заряда. Таким образом ток IS равен тепловому току диода при VD=0 и называется в модели диода током насыщения, так как не зависит от напряжения. Графически величина тока Is определяется как точка пересечения графика ВАХ диода в прямом включении, построенного в полулогарифмическом масштабе logID(VD)) с осью log ID (см. рис.2б).
Коэффициент N позволяет учесть влияние на величину диффузионного тока в прямом включении диода процессов рекомбинации электронов и дырок, которые снижают ток IN (см. рис.2б). Если рекомбинацией пренебречь, то N=1, в противном случае 1 < N < 2.
Температурный потенциал φT равен
|
(4) |
Где k - постоянная Больцмана;
Т - абсолютное значение температуры диода;
q - заряд электрона.
При комнатной температуре (То= ЗООК) φT =0,25 мВ.
Элемент накопления заряда в диоде QD моделирует два механизма накопления заряда в диоде: накопления заряда в области обеднения р-п -перехода (область пространственного заряда неподвижных ионов легирующих примесей) QDJ и накопление заряда инжектированных неосновных носителей заряда QDI. Заряд QD равен сумме QDJ и QDI.
Элемент QD эквивалентен емкости диода, зависящей от напряжения и тока диода и описываемой следующим выражением:
|
(5) |
Где CDI – - инжекционная (injection) (диффузионная) емкость диода;
Cdj – емкость обедненной области р-п-перехода (junction) (барьерная, зарядовая).
Диффузионная емкость CDI зависит от тока инжектированных в прямом включении диода носителей IN и времени их существования в той области, в которую они инжектированы τT, и описывается выражением
|
(6) |
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем