Математическое обеспечение схемотехнического проектирования
Время τT в случае высокой скорости рекомбинации носителей заряда и сравнительно больших толщинах областей диода (катода или анода) определяется временем жизни носителей заряда, в противном случае - временем переноса (прохождения) заряда по области диода.
Барьерная емкость Cdj зависит от напряжения приложенного к р-п -переходу диода VD, поскольку оно изменяет размеры обедненной области
и накопленный ею заряд ионов легирующей примеси. Описывается емкость Cdj выражениями
|
(7) |
|
(8) |
где Сjo - емкость р-п-перехода диода при VD=0;
φJ – контактная разность потенциалов р-п-перехода диода;
М – коэффициент резкости р-п-перехода;
FC – коэффициент для определения емкости обедненной области в режиме прямого смещения.
Вольтфарадная характеристика (ВФХ) CDJ(Vd) и диапазон напряжений Vd, в котором она моделируется, разбивается на два участка. Это разбиение обусловлено тем, что выражение (7) достоверно моделирует ВФХ Cdj(Vd) в обратном и при малых напряжениях в прямом включении. В прямом включении при VD,близких к φjt характеристика Cdj(Vd), рассчитанная по (7),резко стремится к бесконечности, не согласуется с экспериментом. Поэтому в модели Cdj(Vd) используется эмпирический (экспериментально определяемый) коэффициент Fc, определяющий ту часть потенциала φj, до достижения которого напряжением Vd справедливо (7). Типичное значение φj равно 0,7 В.
Коэффициент М оценивает влияние профиля легирования р-п-пе-рехода на характеристику Cdj(Vd). В частности, при образовании р-п -перехода двумя эпитаксиальными слоями (резкий р-п - переход) М=0.3, а при образовании р-п-перехода двумя диффузионными областями (плавный р-п-переход) М=0.5.
Сопротивление RD позволяет определить напряжение на р-п-переходе диода и смоделировать отклонение реальной ВАХ диода от экспоненциального закона, описываемого выражением (2), при больших (близких к φj) напряжениях и высоких уровнях тока диода. Это отклонение (см. рис.2а) обусловлено тем, что при VD близких к (φj резко уменьшается динамическое (дифференциальное) нелинейное сопротивление р-п - перехода диода
|
(9) |
и сравнивается по величине и степени влияния на ток диода с последовательно включенным сопротивлением Rd.
Малосигнальная модель диода
Рассмотренная выше модель диода используется для анализа по постоянному току или переходной характеристики (анализ амплитуды переменного сигнала в дискретные промежутки времени). Эта модель позволяет рассчитать электрические характеристики при напряжении на диоде, обусловленном постоянным напряжением питания и переменным входным сигналом (напряжением).
При анализе характеристик линейных (усилительных) ИС по переменному току (напряжению), управляемых малыми по амплитуде сигналами, используются малосигнальные модели, в которых не учитывается влияние величины входного сигнала (напряжения) на характеристики элементов эквивалентной схемы.
Эквивалентная схема малосигнальной модели диода приведена на рис 3а. Эта эквивалентная схема отличается от схемы, приведенной на рис. 1 тем, что в ней отсутствуют нелинейные элементы (генератор тока ID и элемент QD), характеристики которых зависят от величины управляющего входного сигнала (напряжения) нелинейно. Использование эквивалентной схемы диода с линейными элементами, характеристики которых не зависят от амплитуды входного сигнала, существенно упрощает анализ ИС по переменному току.
Рис 3. Малосигнальная (а) и шумовая (б) эквивалентные схемы диода
Рис. 4. Эквивалентная схема БТ
Элементы в этой схеме моделируют:
- резистор RD - омическое сопротивление областей анода и катода;
- проводимость GD - проводимость р-п-перехода диода при прямом включении;
- конденсатор CD - емкость диода.
Назначение резистора RD такое же, как и в схеме, приведенной на рис.1.
Проводимость GD с учетом выражения (2) описывается выражением
|
(10) |
Проводимость GD и емкость CD рассчитываются для некоторого фиксированного значения напряжения VD определенного в результате анализа ИС по постоянному току (при подключения к схеме только источника питания) и сохраняют свои значения в ходе анализа ИС по переменному току.
Шумовая модель диода
Анализ шумовых характеристик проводится при моделировании линейных ИС в режиме малого сигнала. Поэтому за основу эквивалентной схемы шумовой модели диода, приведенной на рис.3.б, взята его малосигнальная модель. Эквивалентная схема, приведенная на рис.3.б, содержит два генератора шумовых токов, включенных параллельно тем элементам эквивалентной схемы, шумы (noise) которых они моделируют:
- генератор INRD – моделирует тепловой шум резистора RD;
- генератор IND – моделирует дробовой и фликер - шум диода.
Тепловой шум резистора обусловлен хаотическим тепловым движением носителей заряда в областях анода и катода. Генератор INRD моделируется выражением
|
(11) |
Дробовой шум обусловлен дискретным характером переноса заряда при протекании тока и зависит от заряда электрона и тока диода.
Дробовой и тепловой шумы являются ''белыми", то есть частотно-независимыми.
Фликер-шум (шум 1/f) объясняет увеличение шумов полупроводниковых: приборов на низких частотах. Обусловлен этот шум флуктуациями (изменениями) концентрации носителей заряда и их подвижности и зависит от тока диода и частоты переменного управляющего сигнала. Генератор IND моделируется выражением
|
(12) |
где f- частота переменного сигнала;
Kf и αf – коэффициенты фликер-шума,
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем