Числовые ряды
Содержание
Лекция. Числовые ряды
1. Определение числового ряда. Сходимость
2. Основные свойства числовых рядов
3. Ряды с положительными членами. Признаки сходимости
4. Знакочередующиеся ряды. Признак сходимости Лейбница
5. Знакопеременные ряды
Вопросы для самопроверки
Литература
Лекция. ЧИСЛОВЫЕ РЯДЫ
1. Определение числового ряда. С
ходимость.
2. Основные свойства числовых рядов.
3. Ряды с положительными членами. Признаки сходимости.
4. Знакочередующиеся ряды. Признак сходимости Лейбница.
5. Знакопеременные ряды.
1. Определение числового ряда. Сходимость
В математических приложениях, а также при решении некоторых задач в экономике, статистике и других областях рассматриваются суммы с бесконечным числом слагаемых. Здесь мы дадим определение того, что понимается под такими суммами.
Пусть задана бесконечная числовая последовательность
, , …, , …
Определение 1.1. Числовым рядом или просто рядом называется выражение (сумма) вида
. (1.1)
Числа называются членами ряда, – общим или n–м членом ряда.
Чтобы задать ряд (1.1) достаточно задать функцию натурального аргумента вычисления -го члена ряда по его номеру
Пример 1.1. Пусть . Ряд
(1.2)
называется гармоническим рядом.
Пример 1.2. Пусть , Ряд
(1.3)
называется обобщенным гармоническим рядом. В частном случае при получается гармонический ряд.
Пример 1.3. Пусть =. Ряд
(1.4)
называется рядом геометрической прогрессии.
Из членов ряда (1.1) образуем числовую последовательность частичных сумм где – сумма первых членов ряда, которая называется n-й частичной суммой, т. е.
,
,
,
…………………………….
, (1.5)
…………………………….
Числовая последовательность при неограниченном возрастании номера может:
1) иметь конечный предел;
2) не иметь конечного предела (предел не существует или равен бесконечности).
Определение 1.2. Ряд (1.1) называется сходящимся, если последовательность его частичных сумм (1.5) имеет конечный предел, т. е.
В этом случае число называется суммой ряда (1.1) и пишется
.
Определение 1.3. Ряд (1.1) называется расходящимся, если последовательность его частичных сумм не имеет конечного предела.
Расходящемуся ряду не приписывают никакой суммы.
Таким образом, задача нахождения суммы сходящегося ряда (1.1) равносильна вычислению предела последовательности его частичных сумм.
Рассмотрим несколько примеров.
Пример 1.4. Доказать, что ряд
сходится, и найти его сумму.
Найдем n-ю частичную сумму данного ряда .
Общий член ряда представим в виде .
Тогда
Отсюда имеем: . Следовательно, данный ряд сходится и его сумма равна 1:
Пример 1.5. Исследовать на сходимость ряд
(1.6)
Для этого ряда
. Следовательно, данный ряд расходится.
Замечание. При ряд (1.6) представляет собой сумму бесконечного числа нулей и является, очевидно, сходящимся.
Пример 1.6. Исследовать на сходимость ряд
(1.7)
Для этого ряда
В этом случае предел последовательности частичных сумм не существует, и ряд расходится.
Пример 1.7. Исследовать на сходимость ряд геометрической прогрессии (1.4):
Нетрудно показать, что n-я частичная сумма ряда геометрической прогрессии при задается формулой
.
Рассмотрим случаи:
1) Тогда и .
Следовательно, ряд сходится и его сумма равна
2) .
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах