Объем фигур вращения правильных многогранников
Вычислить объем тела, полученного вращением октаэдра относительно оси, проходящей через центры его противоположных граней, если ребро октаэдра равно a.
4. Решение задач на вращение многогранников
ТЕТРАЭДР
Задача 1.1.
Вычислить объем тела, полученного вращением тетраэдра
относительно оси, проходящей через его ребро, если ребро тетраэдра равно а.
Решен
ие:
В данном случае прямые (образующие поверхности) пересекают ось вращения, значит, в результате вращения получаются конические поверхности с общим основанием.
;
;
;
;
;
Ответ:
Задача 1.2.
Вычислить объем тела, полученного вращением тетраэдра
относительно оси, проходящей через центр грани и противоположную вершину (т.е. через высоту тетраэдра), если ребро тетраэдра равно а.
Решение:
Прямые (образующие поверхности) пересекают ось вращения, значит, в результате вращения получается коническая поверхность.
Фигура вращения представляет собой конус, в основании которого находится окружность, описанная около правильного треугольника (грани тетраэдра), а образующие конуса – ребра тетраэдра.
Так как основанием тетраэдра является правильный треугольник, следовательно
;
Для вычисления высоты конуса (Н) рассмотрим прямоугольный треугольник АВС, в котором гипотенуза ВС – ребро тетраэдра – по условию равна а. Катет АВ – это радиус окружности описанной около равностороннего треугольника со стороной а, следовательно,
АВ
Тогда по теореме Пифагора
;
.
Ответ:
Задача 1.3.
Вычислить объем тела, полученного вращением тетраэдра
относительно оси, проходящей через среднюю линию грани тетраэдра, если ребро тетраэдра равно а.
В результате вращения образуется тело вращения, состоящее из двух усеченных конусов с общим основанием. Причем, в каждом из них «вырезается» конус при меньшем основании (см. рис.). Таким образом,
;
Найдем R1 из треугольника АВС, где АС – средняя линия грани тетраэдра (АС = по свойству средней линии); АВ = СВ =. Тогда по теореме Пифагора
;
;
Для нахождения R2 через вершину N основания тетраэдра проведем прямую ND параллельную СК. . Четырехугольник NDCK – параллелограмм (так как стороны попарно параллельны), следовательно, треугольник DNA равносторонний со стороной . Тогда
; .
Таким образом, окончательно получаем:
Ответ:
ГЕКСАЭДР (Куб)
Задача 2.1.
Вычислить объем тела, полученного вращением куба относительно оси, проходящей через противоположные вершины, если ребро куба равно а.
Решение:
В результате вращения образуется тело, состоящее из двух конусов и однополостного гиперболоида (см. рис.).
Так как RВ = RН = R, то
.
Таким образом,
.
1). Для нахождения объема конуса рассмотрим правильную треугольную пирамиду.
Так как основанием пирамиды является равносторонний треугольник со стороной
, то
H1 находим из прямоугольного треугольника, в котором гипотенуза равна а, а один из катетов равен R.
Тогда
.
Таким образом
2). Найдем объем однополостного гиперболоида вращения по формуле Симпсона.
Так как RВ = RН = R, то
Перпендикулярным сечением данного тела вращения является правильный шестиугольник, сторона которого равна половине диагонали грани куба, следовательно, равна
.
Таким образом, RСР является радиусом окружности описанной около правильный шестиугольника со стороной
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах